File: TutorialCpp_nlp.cpp

package info (click to toggle)
coinor-ipopt 3.14.19-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,796 kB
  • sloc: cpp: 97,169; sh: 4,802; ansic: 2,537; java: 1,289; makefile: 821; fortran: 224; xml: 210
file content (369 lines) | stat: -rw-r--r-- 8,285 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
// Copyright (C) 2009 International Business Machines.
// All Rights Reserved.
// This code is published under the Eclipse Public License.
//
// Author:  Andreas Waechter               IBM    2009-04-02

// This file is part of the Ipopt tutorial.  It is a correct version
// of a C++ implementation of the coding exercise problem (in AMPL
// formulation):
//
// param n := 4;
//
// var x {1..n} <= 0, >= -1.5, := -0.5;
//
// minimize obj:
//   sum{i in 1..n} (x[i]-1)^2;
//
// subject to constr {i in 2..n-1}:
//   (x[i]^2+1.5*x[i]-i/n)*cos(x[i+1]) - x[i-1] = 0;
//
// The constant term "i/n" in the constraint is supposed to be input data

#include "TutorialCpp_nlp.hpp"

#include <cassert>
#include <cstdio>

// We use sin and cos
#include <cmath>

using namespace Ipopt;

// constructor
TutorialCpp_NLP::TutorialCpp_NLP(
   Index         N,
   const Number* a
)
   : N_(N)
{
   // Copy the values for the constants appearing in the constraints
   a_ = new Number[N_ - 2];
   for( Index i = 0; i < N_ - 2; i++ )
   {
      a_[i] = a[i];
   }
}

//destructor
TutorialCpp_NLP::~TutorialCpp_NLP()
{
   // make sure we delete everything we allocated
   delete[] a_;
}

// returns the size of the problem
bool TutorialCpp_NLP::get_nlp_info(
   Index&          n,
   Index&          m,
   Index&          nnz_jac_g,
   Index&          nnz_h_lag,
   IndexStyleEnum& index_style
)
{
   // number of variables is given in constructor
   n = N_;

   // we have N_-2 constraints
   m = N_ - 2;

   // each constraint has three nonzeros
   nnz_jac_g = 3 * m;

   // We have the full diagonal, and the first off-diagonal except for
   // the first and last variable
   nnz_h_lag = n + (n - 2);

   // use the C style indexing (0-based) for the matrices
   index_style = TNLP::C_STYLE;

   return true;
}

// returns the variable bounds
bool TutorialCpp_NLP::get_bounds_info(
   Index   n,
   Number* x_l,
   Number* x_u,
   Index   m,
   Number* g_l,
   Number* g_u
)
{
   // here, the n and m we gave IPOPT in get_nlp_info are passed back to us.
   // If desired, we could assert to make sure they are what we think they are.
   assert(n == N_);
   assert(m == N_ - 2);

   // the variables have lower bounds of -1.5
   for( Index i = 0; i < n; i++ )
   {
      x_l[i] = -1.5;
   }

   // the variables have upper bounds of 0
   for( Index i = 0; i < n; i++ )
   {
      x_u[i] = 0.;
   }

   // all constraints are equality constraints with right hand side zero
   for( Index j = 0; j < m; j++ )
   {
      g_l[j] = g_u[j] = 0.;
   }

   return true;
}

// returns the initial point for the problem
bool TutorialCpp_NLP::get_starting_point(
   Index   n,
   bool    init_x,
   Number* x,
   bool    init_z,
   Number* z_L,
   Number* z_U,
   Index   m,
   bool    init_lambda,
   Number* lambda
)
{
   // Here, we assume we only have starting values for x, if you code
   // your own NLP, you can provide starting values for the dual variables
   // if you wish
   assert(init_x == true);
   assert(init_z == false);
   assert(init_lambda == false);

   // initialize to the given starting point
   for( Index i = 0; i < n; i++ )
   {
      x[i] = -0.5;
   }

   return true;
}

// returns the value of the objective function
// sum{i in 1..n} (x[i]-1)^2;
bool TutorialCpp_NLP::eval_f(
   Index         n,
   const Number* x,
   bool          new_x,
   Number&       obj_value
)
{
   obj_value = 0.;
   for( Index i = 0; i < n; i++ )
   {
      obj_value += (x[i] - 1.) * (x[i] - 1.);
   }

   return true;
}

// return the gradient of the objective function grad_{x} f(x)
bool TutorialCpp_NLP::eval_grad_f(
   Index         n,
   const Number* x,
   bool          new_x,
   Number*       grad_f
)
{
   for( Index i = 0; i < n; i++ )
   {
      grad_f[i] = 2. * (x[i] - 1.);
   }

   return true;
}

// return the value of the constraints: g(x)
// (x[j+1]^2+1.5*x[j+1]-a[j])*cos(x[j+2]) - x[j] = 0;
bool TutorialCpp_NLP::eval_g(
   Index         n,
   const Number* x,
   bool          new_x,
   Index         m,
   Number*       g
)
{
   for( Index j = 0; j < m; j++ )
   {
      g[j] = (x[j + 1] * x[j + 1] + 1.5 * x[j + 1] - a_[j]) * cos(x[j + 2]) - x[j];
   }

   return true;
}

// return the structure or values of the jacobian
bool TutorialCpp_NLP::eval_jac_g(
   Index         n,
   const Number* x,
   bool          new_x,
   Index         m,
   Index         nele_jac,
   Index*        iRow,
   Index*        jCol,
   Number*       values
)
{
   if( values == NULL )
   {
      // return the structure of the jacobian

      Index inz = 0;
      for( Index j = 0; j < m; j++ )
      {
         iRow[inz] = j;
         jCol[inz] = j;
         inz++;
         iRow[inz] = j;
         jCol[inz] = j + 1;
         inz++;
         iRow[inz] = j;
         jCol[inz] = j + 2;
         inz++;
      }
      // sanity check
      assert(inz == nele_jac);
   }
   else
   {
      // return the values of the jacobian of the constraints

      Index inz = 0;
      for( Index j = 0; j < m; j++ )
      {
         values[inz] = -1.;
         inz++;
         values[inz] = (2. * x[j + 1] + 1.5) * cos(x[j + 2]);
         inz++;
         values[inz] = -(x[j + 1] * x[j + 1] + 1.5 * x[j + 1] - a_[j]) * sin(x[j + 2]);
         inz++;
      }
      // sanity check
      assert(inz == nele_jac);
   }

   return true;
}

//return the structure or values of the hessian
bool TutorialCpp_NLP::eval_h(
   Index         n,
   const Number* x,
   bool          new_x,
   Number        obj_factor,
   Index         m,
   const Number* lambda,
   bool          new_lambda,
   Index         nele_hess,
   Index*        iRow,
   Index*        jCol,
   Number*       values
)
{
   if( values == NULL )
   {

      Index inz = 0;

      // First variable has only a diagonal entry
      iRow[inz] = 0;
      jCol[inz] = 0;
      inz++;

      // Next ones have first off-diagonal and diagonal
      for( Index i = 1; i < n - 1; i++ )
      {
         iRow[inz] = i;
         jCol[inz] = i;
         inz++;
         iRow[inz] = i;
         jCol[inz] = i + 1;
         inz++;
      }

      // Last variable has only a diagonal entry
      iRow[inz] = n - 1;
      jCol[inz] = n - 1;
      inz++;

      assert(inz == nele_hess);
   }
   else
   {
      // return the values. This is a symmetric matrix, fill the upper right
      // triangle only

      Index inz = 0;

      // Diagonal entry for first variable
      values[inz] = obj_factor * 2.;
      inz++;

      for( Index i = 1; i < n - 1; i++ )
      {
         values[inz] = obj_factor * 2. + lambda[i - 1] * 2. * cos(x[i + 1]);
         if( i > 1 )
         {
            values[inz] -= lambda[i - 2] * (x[i - 1] * x[i - 1] + 1.5 * x[i - 1] - a_[i - 2]) * cos(x[i]);
         }
         inz++;
         values[inz] = -lambda[i - 1] * (2. * x[i] + 1.5) * sin(x[i + 1]);
         inz++;
      }

      values[inz] = obj_factor * 2.;
      values[inz] -= lambda[n - 3] * (x[n - 2] * x[n - 2] + 1.5 * x[n - 2] - a_[n - 3]) * cos(x[n - 1]);
      inz++;

      assert(inz == nele_hess);
   }

   return true;
}

void TutorialCpp_NLP::finalize_solution(
   SolverReturn               status,
   Index                      n,
   const Number*              x,
   const Number*              z_L,
   const Number*              z_U,
   Index                      m,
   const Number*              g,
   const Number*              lambda,
   Number                     obj_value,
   const IpoptData*           ip_data,
   IpoptCalculatedQuantities* ip_cq
)
{
   // here is where we would store the solution to variables, or write
   // to a file, etc so we could use the solution.

   printf("\nWriting solution file solution.txt\n");
   FILE* fp = fopen("solution.txt", "w");

   // For this example, we write the solution to the console
   fprintf(fp, "\n\nSolution of the primal variables, x\n");
   for( Index i = 0; i < n; i++ )
   {
      fprintf(fp, "x[%d] = %e\n", (int)i, x[i]);
   }

   fprintf(fp, "\n\nSolution of the bound multipliers, z_L and z_U\n");
   for( Index i = 0; i < n; i++ )
   {
      fprintf(fp, "z_L[%d] = %e\n", (int)i, z_L[i]);
   }
   for( Index i = 0; i < n; i++ )
   {
      fprintf(fp, "z_U[%d] = %e\n", (int)i, z_U[i]);
   }

   fprintf(fp, "\n\nObjective value\n");
   fprintf(fp, "f(x*) = %e\n", obj_value);
   fclose(fp);
}