1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
% Copyright (C) 2009 International Business Machines
% All Rights Reserved.
% This code is published under the Eclipse Public License.
%
% $Id: hs071_c.c 699 2006-04-05 21:05:18Z andreasw $
%
% Author: Andreas Waechter IBM 2009-04-02
%
% This file is part of the Ipopt tutorial. It is a correct version
% of a the matlab implemention of the coding exercise problem
% (in AMPL formulation):
%
% param n := 4;
%
% var x {1..n} <= 0, >= -1.5, := -0.5;
%
% minimize obj:
% sum{i in 1..n} (x[i]-1)^2;
%
% subject to constr {i in 2..n-1}:
% (x[i]^2+1.5*x[i]-i/n)*cos(x[i+1]) - x[i-1] = 0;
%
% The constant term "i/n" in the constraint is supposed to be input data
function [x, info] = TutorialMatlab
% Size of the problem
n = 5;
% Problem data
a = ((1:n)/n)';
% Starting point
x0 = -0.5*ones(n,1);
% Lower and upper bounds for the variables
options.lb = -1.5*ones(n,1);
options.ub = zeros(n,1);
% Constraint bounds
options.cl = zeros(n-2,1);
options.cu = zeros(n-2,1);
% Set the Ipopt options
options.ipopt.mu_strategy = 'adaptive';
% options.ipopt.derivative_test = 'second-order';
% Set the callback functions
funcs.objective = @eval_f;
funcs.constraints = @eval_g;
funcs.gradient = @eval_grad_f;
funcs.jacobian = @eval_jac_g;
funcs.jacobianstructure = @eval_jac_g_struct;
funcs.hessian = @eval_hess;
funcs.hessianstructure = @eval_hess_struct;
[x info] = ipopt(x0, funcs, options);
% End of main function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Evaluate value of objective function
function f = eval_f(x)
tmp = (x - 1).^2;
f = sum(tmp);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Evaluate gradient of objective function
function df = eval_grad_f(x)
df = 2*(x - 1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Evaluate value of constraint bodies
function g = eval_g(x)
g = (x(2:n-1).^2 + 1.5*x(2:n-1) - a(2:n-1)).*cos(x(3:n)) - x(1:n-2);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Return constraint Jacobian strcture
function A = eval_jac_g_struct
% tri-diagonal structure
Diags = ones(n, 3);
A = spdiags(Diags, 0:2, n-2, n);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Evaluate constraint Jacobian
function A = eval_jac_g(x)
Diags = -1*ones(n-2,3);
Diags(:,2) = (2*x(2:n-1)+1.5).*cos(x(3:n));
Diags(:,3) = -(x(2:n-1).^2 + 1.5*x(2:n-1) - a(2:n-1)).*sin(x(3:n));
A = spdiags(Diags, 0:2, n-2, n);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Return Hessian of Lagrangian function structure
function H = eval_hess_struct
Diags = ones(n, 2);
H = spdiags(Diags, -1:0, n, n);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Evaluate Hessian of Lagrangian function
function H = eval_hess(x, sigma, lambda)
Diags = zeros(n,2);
% part from the objective function
Diags(:,2) = sigma * 2;
% (x_i , x_i) part
Diags(2:n-1,2) = Diags(2:n-1,2) + 2*lambda.*cos(x(3:n));
% (x_{i+1}, x_{i+1}) part
Diags(3:n,2) = Diags(3:n,2) ...
- lambda.*(x(2:n-1).^2 + 1.5*x(2:n-1) - a(2:n-1)).*cos(x(3:n));
% (x_i, x_{i+1}) part
Diags(2:n-1,1) = -lambda.*sin(x(3:n)).*(2*x(2:n-1)+1.5);
H = spdiags(Diags, -1:0, n, n);
end
end
|