File: Po.v

package info (click to toggle)
coinst 1.01-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 652 kB
  • sloc: ml: 6,576; makefile: 119
file content (205 lines) | stat: -rw-r--r-- 5,572 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

Set Implicit Arguments.
Unset Strict Implicit.

(****)

Definition is_transitive (A : Type) (r : A -> A -> Prop) :=
  forall x y z : A, r x y -> r y z -> r x z.

Definition is_reflexive (A : Type) (r : A -> A -> Prop) :=
  forall x : A, r x x.

Definition is_symmetric (A : Type) (r : A -> A -> Prop) :=
  forall x y : A, r x y -> r y x.

(****)

Record po : Type :=
  { po_carrier :> Type;
    sub : po_carrier -> po_carrier -> Prop;
    sub_transitive : is_transitive sub;
    sub_reflexive : is_reflexive sub }.

Section equivalence.

Variable A : po.

Definition equiv (x y : A) := sub x y /\ sub y x.

(* Antisymmetry *)
Lemma equiv_intro : forall x y : A, sub x y -> sub y x -> equiv x y.
intros; split; trivial.
Qed.

Lemma equiv_elim_1 : forall x y : A, equiv x y -> sub x y.
intros x y (H, H'); trivial.
Qed.

Lemma equiv_elim_2 : forall x y : A, equiv x y -> sub y x.
intros x y (H, H'); trivial.
Qed.

Lemma equiv_transitive : is_transitive equiv.
intros x y z (H1, H2) (H3, H4); split;
  [ exact (sub_transitive H1 H3) | exact (sub_transitive H4 H2) ].
Qed.

Lemma equiv_reflexive : is_reflexive equiv.
intros x; split; apply sub_reflexive.
Qed.

Lemma equiv_symmetric : is_symmetric equiv.
intros x y (H1, H2); split; trivial.
Qed.

End equivalence.

Opaque equiv.

(****)

Lemma opposite_transitive :
  forall (A : Type) (r : A -> A -> Prop),
  is_transitive r -> is_transitive (fun x y => r y x).
unfold is_transitive in |- *; eauto.
Qed.

Lemma opposite_reflexive :
  forall (A : Type) (r : A -> A -> Prop),
  is_reflexive r -> is_reflexive (fun x y => r y x).
trivial.
Qed.

Section opposite.

Variable A : po.

Definition opposite_po :=
  Build_po (opposite_transitive (sub_transitive (p:=A)))
    (opposite_reflexive (sub_reflexive (p:=A))).

Lemma equiv_opp_intro :
 forall x y : A, equiv x y -> equiv (A:=opposite_po) x y.
intros x y H; apply equiv_intro;
  [ apply equiv_elim_2; trivial | apply equiv_elim_1; trivial ].
Qed.

Lemma equiv_opp_elim :
 forall x y : A, equiv (A:=opposite_po) x y -> equiv x y.
intros x y H; apply equiv_intro;
  [ apply equiv_elim_2; trivial | apply equiv_elim_1; trivial ].
Qed.

End opposite.

(****)

Definition is_monotone (A B : po) (f : A -> B) :=
  forall x y : A, sub x y -> sub (f x) (f y).

Record monotone_fun (A B : po) : Type :=
  { m_fun :> A -> B;
    monotone : is_monotone m_fun }.

Definition monotone_sub_def (A B : po) (f g : monotone_fun A B) :=
  forall x : A, sub (f x) (g x).

Lemma monotone_sub_refl :
  forall A B : po, is_reflexive (monotone_sub_def (A:=A) (B:=B)).
intros A B f x; apply sub_reflexive.
Qed.

Lemma monotone_sub_trans :
  forall A B : po, is_transitive (monotone_sub_def (A:=A) (B:=B)).
intros A B f g h H1 H2 x; exact (sub_transitive (H1 x) (H2 x)).
Qed.

Definition monotone_fun_po (A B : po) :=
  Build_po (monotone_sub_trans (A:=A) (B:=B))
    (monotone_sub_refl (A:=A) (B:=B)).

Lemma monotone_eq :
  forall (A B : po) (f : monotone_fun A B) (x y : A),
  equiv x y -> equiv (f x) (f y).
intros A B f x y H; apply equiv_intro;
  [ apply monotone; exact (equiv_elim_1 H)
  | apply monotone; exact (equiv_elim_2 H) ].
Qed.

Let compose_monotone :
  forall (A B C : po) (f : monotone_fun A B)
    (g : monotone_fun B C), is_monotone (fun x => g (f x)).
unfold is_monotone in |- *; intros; apply monotone; apply monotone; trivial.
Qed.

Definition compose (A B C : po) (f : monotone_fun A B)
  (g : monotone_fun B C) := Build_monotone_fun (compose_monotone f g).

Let opp_monotone :
  forall (A B : po) (f : A -> B),
  is_monotone f -> is_monotone (A:=opposite_po A) (B:=opposite_po B) f.
unfold is_monotone in |- *; simpl in |- *; eauto.
Qed.

Definition opposite_monotone (A B : po) (f : monotone_fun A B) :=
  Build_monotone_fun (opp_monotone (monotone f)).

Lemma constant_implies_monotone :
  forall (A B : po) (y : B), is_monotone (fun x : A => y).
intros A B y x x' H; apply sub_reflexive.
Qed.

Definition constant_monotone (A B : po) (y : B) :=
  Build_monotone_fun (@constant_implies_monotone A B y).

(****)

Definition is_fixpoint (A : po) (f : A -> A) (a : A) := equiv a (f a).
Definition is_upper_bound (A : po) (P : A -> Prop) (x : A) :=
  forall y : A, P y -> sub y x.

Definition postfixpoint (A : po) (f : A -> A) (x : A) := sub x (f x).
Definition prefixpoint (A : po) (f : A -> A) (x : A) := sub (f x) x.

(****)

Definition sub_product (A B : po) (x y : prodT A B) :=
  sub (fstT x) (fstT y) /\ sub (sndT x) (sndT y).

Lemma sub_product_transitive :
 forall A B : po, is_transitive (sub_product (A:=A) (B:=B)).
intros A B x y z (H1, H1') (H2, H2'); split;
 [ exact (sub_transitive H1 H2) | exact (sub_transitive H1' H2') ].
Qed.

Lemma sub_product_reflexive :
 forall A B : po, is_reflexive (sub_product (A:=A) (B:=B)).
intros A B x; split; apply sub_reflexive.
Qed.

Definition product_po (A B : po) :=
  Build_po (sub_product_transitive (A:=A) (B:=B))
    (sub_product_reflexive (A:=A) (B:=B)).

(****)

Definition pwe_lift (A : Type) (B : po) (r : B -> B -> Prop) (f g : A -> B) :=
  forall x : A, r (f x) (g x).

Definition sub_pwe (A : Type) (B : po) (f g : A -> B) :=
  forall x : A, sub (f x) (g x).

Lemma sub_pwe_transitive :
  forall (A : Type) (B : po), is_transitive (sub_pwe (A:=A) (B:=B)).
intros A B f g h H1 H2 x; apply sub_transitive with (1 := H1 x); apply H2.
Qed.

Lemma sub_pwe_reflexive :
  forall (A : Type) (B : po), is_reflexive (sub_pwe (A:=A) (B:=B)).
intros A B f x; apply sub_reflexive.
Qed.

Definition pwe_po (A : Type) (B : po) :=
  Build_po (sub_pwe_transitive (A:=A) (B:=B))
           (sub_pwe_reflexive (A:=A) (B:=B)).