File: Relation.v

package info (click to toggle)
coinst 1.01-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 652 kB
  • sloc: ml: 6,576; makefile: 119
file content (171 lines) | stat: -rw-r--r-- 5,231 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

(**** Lattice of relations, of sets ****)

Set Implicit Arguments.
Unset Strict Implicit.

Require Import Lattice.

(****)

Inductive tuple : Type :=
  | t_empty : tuple
  | t_cons : Type -> tuple -> tuple.

Fixpoint tuple_elem (t : tuple) : Type :=
  match t with
  | t_empty => True
  | t_cons t r => prodT t (tuple_elem r)
  end.

Fixpoint nary_fun (A : Type) (t : tuple) {struct t} : Type :=
  match t with
  | t_empty => A
  | t_cons t r => t -> nary_fun A r
  end.

Fixpoint curry (A : Type) (t : tuple) {struct t} :
 nary_fun A t -> tuple_elem t -> A :=
  match t return (nary_fun A t -> tuple_elem t -> A) with
  | t_empty => fun f _ => f
  | t_cons t rem => fun f p => let (x, p') := p in curry (f x) p'
  end.

Definition uncurry (A : Type) (t : tuple) :
  (tuple_elem t -> A) -> nary_fun A t.
induction t;
 [ intros f; exact (f I)
 | intros f x; apply IHt; intro p; apply f; split; [ exact x | exact p ] ].
Defined.

Definition rel := nary_fun Prop.

Fixpoint rel_sub (t : tuple) : rel t -> rel t -> Prop :=
  match t return (rel t -> rel t -> Prop) with
  | t_empty => fun r r' => r -> r'
  | t_cons t rem => fun r r' => forall x : t, rel_sub (r x) (r' x)
  end.

Lemma rel_sub_transitive : forall t : tuple, is_transitive (rel_sub (t:=t)).
red in |- *; induction t; simpl in |- *; eauto.
Qed.

Lemma rel_sub_reflexive : forall t : tuple, is_reflexive (rel_sub (t:=t)).
red in |- *; induction t; simpl in |- *; auto.
Qed.

Definition rel_po (t : tuple) :=
  Build_po (rel_sub_transitive (t:=t)) (rel_sub_reflexive (t:=t)).

Definition rel_union (t : tuple) (s : rel_po t -> Prop) :
  rel_po t := uncurry (fun p => exists r : _, s r /\ curry r p).

Definition rel_inter (t : tuple) (s : rel_po t -> Prop) :
  rel_po t := uncurry (fun p => forall r : rel_po t, s r -> curry r p).

Lemma curry_monotone :
  forall t : tuple,
  @is_monotone (rel_po t) (rel_po (t_cons (tuple_elem t) t_empty))
     (@curry Prop t).
red in |- *; induction t; simpl in |- *;
  [ trivial | intros r r' H (x, p); apply IHt; exact (H x) ].
Qed.

Lemma uncurry_monotone :
  forall t : tuple,
  @is_monotone (rel_po (t_cons (tuple_elem t) t_empty)) (rel_po t)
     (@uncurry Prop t).
red in |- *; induction t; simpl in |- *;
  [ auto | intros r r' H x; apply IHt; intro p; apply H ].
Qed.

Lemma uncurry_curry_prop :
 forall (t : tuple) (r : rel_po t), equiv r (uncurry (curry r)).
intros t r; apply equiv_intro;
 [ induction t;
    [ simpl in |- *; trivial
    | intro x; apply rel_sub_transitive with (1 := IHt (r x)); simpl in |- *;
       apply uncurry_monotone; simpl in |- *; trivial ]
 | induction t;
    [ simpl in |- *; trivial
    | intro x; apply rel_sub_transitive with (2 := IHt (r x)); simpl in |- *;
       apply uncurry_monotone; simpl in |- *; trivial ] ].
Qed.

Lemma rel_union_sup : forall t : tuple, least_upper_bound (rel_po t).
intro t;
apply Build_least_upper_bound
with (A := rel_po t) (lub_def := rel_union (t:=t));
 [ intros P r H; simpl in |- *;
    apply rel_sub_transitive with (1 := proj1 (uncurry_curry_prop r));
    unfold rel_union in |- *; apply uncurry_monotone;
    intros x H'; exists r; split; trivial
 | intros P r H;
    apply
     (sub_transitive (p:=rel_po t)) with (2 := proj2 (uncurry_curry_prop r));
    unfold rel_union in |- *; apply uncurry_monotone;
    intros x (r', (H1, H2)); generalize x H2; clear x H2;
    apply curry_monotone; exact (H _ H1) ].
Defined.

Definition relation (t : tuple) := Build_lattice_2 (rel_union_sup t).

(****)

Definition set (A : Type) := relation (t_cons A t_empty).

Definition singleton (A : Type) (x : A) : set A := fun y => y = x.

Definition inter (A : Type) (t t' : set A) : set A := fun v => t v /\ t' v.

Lemma inter_lower_bound_1 :
  forall (A : Type) (t t' : set A), sub (inter t t') t.
intros A t t' x (H1, H2); trivial.
Qed.

Lemma inter_lower_bound_2 :
  forall (A : Type) (t t' : set A), sub (inter t t') t'.
intros A t t' x (H1, H2); trivial.
Qed.

Lemma inter_greatest :
  forall (A : Type) (t t' t'': set A),
  sub t'' t -> sub t'' t' -> sub t'' (inter t t').
intros A t t' t'' H1 H2 x H3; split;
  [ apply H1; trivial | apply H2; trivial ].
Qed.

Lemma sub_inter_split :
  forall A (t t' u u' : set A),
  sub t t' -> sub u u' -> sub (inter t u) (inter t' u').
intros A t t' u u' H1 H2; apply inter_greatest;
  [ apply (@sub_transitive (set A)) with (2 := H1);apply inter_lower_bound_1
  | apply (@sub_transitive (set A)) with (2 := H2);apply inter_lower_bound_2 ].
Qed.

Lemma monotony_and_inter :
  forall A B (f : monotone_fun (set A) (set B)) x x',
  sub (f (inter x x')) (inter (f x) (f x')).
intros A B f x x'; apply inter_greatest; apply monotone;
 [ apply inter_lower_bound_1
 | apply inter_lower_bound_2 ].
Qed.

Definition union (A : Type) (t t' : set A) : set A := fun v => t v \/ t' v.

Lemma union_upper_bound_1 :
  forall (A : Type) (t t' : set A), sub t (union t t').
intros A t t' x H1; left; trivial.
Qed.

Lemma union_upper_bound_2 :
  forall (A : Type) (t t' : set A), sub t' (union t t').
intros A t t' x H1; right; trivial.
Qed.

Lemma union_least :
  forall (A : Type) (t t' t'': set A),
  sub t t'' -> sub t' t'' -> sub (union t t') t''.
intros A t t' t'' H1 H2 x [H3 | H3];
  [ apply H1; trivial | apply H2; trivial ].
Qed.