File: solver.ml

package info (click to toggle)
coinst 1.01-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 652 kB
  • sloc: ml: 6,576; makefile: 119
file content (543 lines) | stat: -rw-r--r-- 14,381 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
(* Solver *)
(* SAT solver by Jerôme Vouillon *)

let debug = ref false

module type S = sig
  type reason
end

module type SOLVER = sig
  type state

  type reason

  type var = int
  type lit
  val lit_of_var : var -> bool -> lit

  val initialize_problem :
    ?print_var:(Format.formatter -> int -> unit) -> int -> state
  val propagate : state -> unit

  val protect : state -> unit
  val reset : state -> unit

  type value = True | False | Unknown
  val assignment : state -> value array

  val add_rule : state -> lit array -> reason list -> unit
  val associate_vars : state -> lit -> var list -> unit

  val solve : state -> var -> bool
  val solve_lst : state -> var list -> bool

  val collect_reasons : state -> var -> reason list
  val collect_reasons_lst : state -> var list -> reason list
end

module F (X : S) = struct

(* Variables *)
type var = int

(* Literals *)
type lit = int

type reason = X.reason

(* A clause is an array of literals *)
type clause =
  { lits : lit array;
    all_lits : lit array;
    reasons : reason list }

type value = True | False | Unknown

module LitMap =
  Map.Make (struct type t = int let compare (x : int) y = compare x y end)

type state =
  { (* Indexed by var *)
    st_assign : value array;
    st_reason : clause option array;
    st_level : int array;
    st_seen_var : int array;
    st_refs : int array;
    st_pinned : bool array;
    (* Indexed by lit *)
    st_simpl_prop : clause LitMap.t array;
    st_watched : clause list array;
    st_associated_vars : var list array;
    (* Queues *)
    mutable st_trail : lit list;
    mutable st_trail_lim : lit list list;
    st_prop_queue : lit Queue.t;
    (* Misc *)
    mutable st_cur_level : int;
    mutable st_min_level : int;
    mutable st_seen : int;
    mutable st_var_queue_head : var list;
    st_var_queue : var Queue.t;
    mutable st_cost : int; (* Total computational cost so far *)
    st_print_var : Format.formatter -> int -> unit;
    mutable st_coherent : bool }

(****)

let charge st x = st.st_cost <- st.st_cost + x
let get_bill st = st.st_cost

(****)

let pin_var st x = st.st_pinned.(x) <- true

let unpin_var st x = st.st_pinned.(x) <- false

let enqueue_var st x =
  charge st 1;
  pin_var st x;
  Queue.push x st.st_var_queue

let requeue_var st x =
  pin_var st x;
  st.st_var_queue_head <- x :: st.st_var_queue_head

(* Returns -1 if no variable remains *)
let rec dequeue_var st =
  let x =
    match st.st_var_queue_head with
      x :: r -> st.st_var_queue_head <- r; x
    | []     -> try Queue.take st.st_var_queue with Queue.Empty -> -1
  in
  if x = -1 then x else begin
    unpin_var st x;
    if st.st_refs.(x) = 0 || st.st_assign.(x) <> Unknown then
      dequeue_var st
    else
      x
  end

(****)

let var_of_lit p = p lsr 1
let pol_of_lit p = p land 1 = 0
let lit_of_var v s = if s then v + v else v + v + 1
let lit_neg p = p lxor 1

let val_neg v =
  match v with
    True    -> False
  | False   -> True
  | Unknown -> Unknown

let val_of_bool b = if b then True else False

let val_of_lit st p =
  let v = st.st_assign.(var_of_lit p) in
  if pol_of_lit p then v else val_neg v

(****)

let print_val ch v =
  Format.fprintf ch "%s"
    (match v with True -> "True" | False -> "False" | Unknown -> "Unknown")

let print_lits st ch lits =
  Format.fprintf ch "{";
  Array.iter
    (fun p ->
       if pol_of_lit p then
         Format.fprintf ch " +%a" st.st_print_var (var_of_lit p)
       else
         Format.fprintf ch " -%a" st.st_print_var (var_of_lit p))
    lits;
  Format.fprintf ch " }"

let print_rule st ch r = print_lits st ch r.lits

(****)

exception Conflict of clause option

let enqueue st p reason =
  charge st 1;
  if !debug then begin
    match reason with
      Some r -> Format.eprintf "Applying rule %a@." (print_rule st) r
    | _ -> ()
  end;
  match val_of_lit st p with
    False ->
      if !debug then begin
        if pol_of_lit p then
          Format.eprintf "Cannot install %a@." st.st_print_var (var_of_lit p)
        else
          Format.eprintf "Already installed %a@."
            st.st_print_var (var_of_lit p)
      end;
      raise (Conflict reason)
  | True ->
      ()
  | Unknown ->
      if !debug then begin
        if pol_of_lit p then
          Format.eprintf "Installing %a@." st.st_print_var (var_of_lit p)
        else
          Format.eprintf "Should not install %a@."
            st.st_print_var (var_of_lit p);
      end;
      let x = var_of_lit p in
      st.st_assign.(x) <- val_of_bool (pol_of_lit p);
      st.st_reason.(x) <- reason;
      st.st_level.(x) <- st.st_cur_level;
      st.st_trail <- p :: st.st_trail;
      List.iter
        (fun x ->
           charge st 1;
           let refs = st.st_refs.(x) in
           if refs = 0 then enqueue_var st x;
           st.st_refs.(x) <- st.st_refs.(x) + 1)
        st.st_associated_vars.(p);
      Queue.push p st.st_prop_queue

let rec find_not_false st lits i l =
  if i = l then -1 else
  if val_of_lit st lits.(i) <> False then i else
  find_not_false st lits (i + 1) l

let propagate_in_clause st r p =
  charge st 1;
  let p' = lit_neg p in
  if r.lits.(0) = p' then begin
    r.lits.(0) <- r.lits.(1);
    r.lits.(1) <- p'
  end;
  if val_of_lit st r.lits.(0) = True then
    st.st_watched.(p) <- r :: st.st_watched.(p)
  else begin
    let i = find_not_false st r.lits 2 (Array.length r.lits) in
    if i = -1 then begin
      st.st_watched.(p) <- r :: st.st_watched.(p);
      enqueue st r.lits.(0) (Some r)
    end else begin
      r.lits.(1) <- r.lits.(i);
      r.lits.(i) <- p';
      let p = lit_neg r.lits.(1) in
      st.st_watched.(p) <- r :: st.st_watched.(p)
    end
  end

let propagate st =
  try
    while not (Queue.is_empty st.st_prop_queue) do
      charge st 1;
      let p = Queue.take st.st_prop_queue in
      LitMap.iter (fun p r -> enqueue st p (Some r)) st.st_simpl_prop.(p);
      let l = ref (st.st_watched.(p)) in
      st.st_watched.(p) <- [];
      begin try
        while
          match !l with
            r :: rem ->
              l := rem;
              propagate_in_clause st r p;
              true
          | [] ->
              false
        do () done
      with Conflict _ as e ->
        st.st_watched.(p) <- !l @ st.st_watched.(p);
        raise e
      end
    done
  with Conflict _ as e ->
    Queue.clear st.st_prop_queue;
    raise e

(****)

let raise_level st =
  st.st_cur_level <- st.st_cur_level + 1;
  st.st_trail_lim <- st.st_trail :: st.st_trail_lim;
  st.st_trail <- []

let assume st p =
  raise_level st;
  enqueue st p None

let protect st =
  propagate st;
  raise_level st;
  st.st_min_level <- st.st_cur_level

let undo_one st p =
  let x = var_of_lit p in
  if !debug then Format.eprintf "Cancelling %a@." st.st_print_var x;
  st.st_assign.(x) <- Unknown;
  st.st_reason.(x) <- None;
  st.st_level.(x) <- -1;
  List.iter
    (fun x -> charge st 1; st.st_refs.(x) <- st.st_refs.(x) - 1)
    st.st_associated_vars.(p);
  if st.st_refs.(x) > 0 && not st.st_pinned.(x) then enqueue_var st x

let cancel st =
  st.st_cur_level <- st.st_cur_level - 1;
  List.iter (fun p -> undo_one st p) st.st_trail;
  match st.st_trail_lim with
    []     -> assert false
  | l :: r -> st.st_trail <- l; st.st_trail_lim <- r

let reset st =
  if !debug then Format.eprintf "Reset@.";
  while st.st_trail_lim <> [] do cancel st done;
  for i = 0 to Array.length st.st_refs - 1 do
    st.st_refs.(i) <- 0;
    st.st_pinned.(i) <- false
  done;
  st.st_var_queue_head <- [];
  st.st_min_level <- 0;
  Queue.clear st.st_var_queue;
  st.st_coherent <- true

(****)

let rec find_next_lit st =
  match st.st_trail with
    [] ->
      assert false
  | p :: rem ->
      st.st_trail <- rem;
      if st.st_seen_var.(var_of_lit p) = st.st_seen then
        let reason = st.st_reason.(var_of_lit p) in
        undo_one st p;
        (p, reason)
      else begin
        undo_one st p;
        find_next_lit st
      end

let analyze st conflict =
  st.st_seen <- st.st_seen + 1;
  let counter = ref 0 in
  let learnt = ref [] in
  let bt_level  = ref 0 in
  let reasons = ref [] in
  let r = ref conflict in
  while
    if !debug then begin
      Array.iter
        (fun p ->
           Format.eprintf "%d:%a (%b/%d) "
             p print_val (val_of_lit st p)
             (st.st_reason.(var_of_lit p) <> None)
             st.st_level.(var_of_lit p))
        !r.lits;
      Format.eprintf "@."
    end;
    reasons := !r.reasons @ !reasons;

    for i = 0 to Array.length !r.lits - 1 do
      let p = !r.lits.(i) in
      let x = var_of_lit p in
      if  st.st_seen_var.(x) <> st.st_seen then begin
        assert (val_of_lit st p = False);
        st.st_seen_var.(x) <- st.st_seen;
        let level = st.st_level.(x) in
        if level = st.st_cur_level then begin
          incr counter
        end else (* if level > 0 then*) begin
          learnt := p :: !learnt;
          bt_level := max level !bt_level
        end
      end
    done;

    let (p, reason) = find_next_lit st in
    decr counter;
    if !counter  = 0 then
      learnt := lit_neg p :: !learnt
    else
      begin match reason with
        Some r' -> r := r'
      | None    -> assert false
      end;
    !counter > 0
  do () done;
  if !debug then begin
    List.iter
      (fun p ->
         Format.eprintf "%d:%a/%d "
           p print_val (val_of_lit st p) st.st_level.(var_of_lit p))
      !learnt;
    Format.eprintf "@."
  end;
  (Array.of_list !learnt, !reasons, !bt_level)

let find_highest_level st lits =
  let level = ref (-1) in
  let i = ref 0 in
  Array.iteri
    (fun j p ->
       if st.st_level.(var_of_lit p) > !level then begin
         level := st.st_level.(var_of_lit p);
         i := j
       end)
    lits;
  !i

let rec solve_rec st =
  match try propagate st; None with Conflict r -> Some r with
    None ->
      let x = dequeue_var st in
      x < 0 ||
      begin
        assume st (lit_of_var x false);
        solve_rec st
      end
  | Some r ->
      let r =
        match r with
          None   -> assert false
        | Some r -> r
      in
      let (learnt, reasons, level) = analyze st r in
      let level = max st.st_min_level level in
      while st.st_cur_level > level do cancel st done;
      assert (val_of_lit st learnt.(0) = Unknown);
      let rule = { lits = learnt; all_lits = learnt; reasons = reasons } in
      if !debug then Format.eprintf "Learning %a@." (print_rule st) rule;
      if Array.length learnt > 1 then begin
        let i = find_highest_level st learnt in
        assert (i > 0);
        let p' = learnt.(i) in
        learnt.(i) <- learnt.(1);
        learnt.(1) <- p';
        let p = lit_neg learnt.(0) in
        let p' = lit_neg p' in
        st.st_watched.(p) <- rule :: st.st_watched.(p);
        st.st_watched.(p') <- rule :: st.st_watched.(p')
      end;
      enqueue st learnt.(0) (Some rule);
      st.st_cur_level > st.st_min_level &&
      solve_rec st

let rec solve st x =
  assert (st.st_cur_level = st.st_min_level);
  propagate st;
  try
    let p = lit_of_var x true in
    assume st p;
    assert (st.st_cur_level = st.st_min_level + 1);
    if solve_rec st then begin
      protect st;
      true
    end else
      solve st x
  with Conflict _ ->
    st.st_coherent <- false;
    false

let rec solve_lst_rec st l0 l =
  match l with
    [] ->
      true
  | x :: r ->
      protect st;
      List.iter (fun x -> enqueue st (lit_of_var x true) None) l0;
      propagate st;
      if solve st x then begin
        if r <> [] then reset st;
        solve_lst_rec st (x :: l0) r
      end else
        false

let solve_lst st l = solve_lst_rec st [] l

let initialize_problem ?(print_var = (fun fmt -> Format.fprintf fmt "%d")) n =
  { st_assign = Array.make n Unknown;
    st_reason = Array.make n None;
    st_level = Array.make n (-1);
    st_seen_var = Array.make n (-1);
    st_refs = Array.make n 0;
    st_pinned = Array.make n false;
    st_simpl_prop = Array.make (2 * n) LitMap.empty;
    st_watched = Array.make (2 * n) [];
    st_associated_vars = Array.make (2 * n) [];
    st_trail = [];
    st_trail_lim = [];
    st_prop_queue = Queue.create ();
    st_cur_level = 0;
    st_min_level = 0;
    st_seen = 0;
    st_var_queue_head = [];
    st_var_queue = Queue.create ();
    st_cost = 0;
    st_print_var = print_var;
    st_coherent = true }

let insert_simpl_prop st r p p' =
  let p = lit_neg p in
  if not (LitMap.mem p' st.st_simpl_prop.(p)) then
    st.st_simpl_prop.(p) <- LitMap.add p' r st.st_simpl_prop.(p)

let add_bin_rule st lits p p' reasons =
  let r = { lits = [|p; p'|]; all_lits = lits; reasons = reasons } in
  insert_simpl_prop st r p p';
  insert_simpl_prop st r p' p

let add_un_rule st lits p reasons =
  let r = { lits = [|p|]; all_lits = lits; reasons = reasons } in
  enqueue st p (Some r)

let add_rule st lits reasons =
  let all_lits = Array.copy lits in
  let is_true = ref false in
  let j = ref 0 in
  for i = 0 to Array.length lits - 1 do
    match val_of_lit st lits.(i) with
      True    -> is_true := true
    | False   -> ()
    | Unknown -> lits.(!j) <- lits.(i); incr j
  done;
  let lits = Array.sub lits 0 !j in
  if not !is_true then
  match Array.length lits with
    0 -> assert false
  | 1 -> add_un_rule st all_lits lits.(0) reasons
  | 2 -> add_bin_rule st all_lits lits.(0) lits.(1) reasons
  | _ -> let rule = { lits = lits; all_lits = all_lits; reasons = reasons } in
         let p = lit_neg rule.lits.(0) in let p' = lit_neg rule.lits.(1) in
         assert (val_of_lit st p <> False);
         assert (val_of_lit st p' <> False);
         st.st_watched.(p) <- rule :: st.st_watched.(p);
         st.st_watched.(p') <- rule :: st.st_watched.(p')

let associate_vars st lit l =
  st.st_associated_vars.(lit) <- l @ st.st_associated_vars.(lit)

let rec collect_rec st x l =
  if st.st_seen_var.(x) = st.st_seen then l else begin
    st.st_seen_var.(x) <- st.st_seen;
    match st.st_reason.(x) with
      None ->
        l
    | Some r ->
        r.reasons @
        Array.fold_left
          (fun l p -> collect_rec st (var_of_lit p) l) l r.all_lits
  end

let collect_reasons st x =
  st.st_seen <- st.st_seen + 1;
  collect_rec st x []

let collect_reasons_lst st l =
  st.st_seen <- st.st_seen + 1;
  let x = List.find (fun x -> st.st_assign.(x) = False) l in
  collect_rec st x []

let assignment st = st.st_assign

end