1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
(* Co-installability tools
* http://coinst.irill.org/
* Copyright (C) 2010-2011 Jérôme Vouillon
* Laboratoire PPS - CNRS Université Paris Diderot
*
* These programs are free software; you can redistribute them and/or
* modify them under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*)
let debug_time = Debug.make "time" "Print execution times" []
let debug_irrelevant =
Debug.make "irrelevant" "Debug irrelevant dependency removal" []
module F (M : Api.S) = struct
module Repository = Repository.F(M)
open Repository
module Quotient = Quotient.F (Repository)
(****)
let compute_dependencies_and_conflicts dist =
let confl = Conflict.create dist in
let c = M.compute_conflicts dist in
Array.iteri
(fun p1 l ->
List.iter
(fun p2 ->
Conflict.add confl (Package.of_index p1) (Package.of_index p2))
l)
c;
let deps =
let d = M.compute_deps dist in
PTbl.init dist
(fun p ->
Formula.conjl
(List.map (fun l' -> Formula.lit_disj (Package.of_index_list l'))
d.(Package.index p)))
in
(deps, confl)
let generate_rules quotient deps confl =
let dist = Quotient.pool quotient in
let st =
M.Solver.initialize_problem
~print_var:(M.print_pack dist) (M.pool_size dist) in
Conflict.iter confl
(fun p1 p2 ->
let p1 = M.Solver.lit_of_var (Package.index p1) false in
let p2 = M.Solver.lit_of_var (Package.index p2) false in
M.Solver.add_rule st [|p1; p2|] []);
Quotient.iter
(fun p ->
let f = PTbl.get deps p in
Formula.iter f
(fun d ->
let l = Disj.to_lits d in
if not (PSet.mem p l) then begin
let l = List.map (fun p -> Package.index p) (PSet.elements l) in
M.Solver.add_rule st
(Array.of_list
(M.Solver.lit_of_var (Package.index p) false ::
List.map (fun p -> M.Solver.lit_of_var p true) l))
[];
match l with
[] | [_] ->
()
| _ ->
M.Solver.associate_vars st
(M.Solver.lit_of_var (Package.index p) true) l
end))
quotient;
st
(****)
(*
let t = ref (Unix.gettimeofday ())
let sample f =
let t' = Unix.gettimeofday () in
if t' -. !t > 1. then begin t := t'; f () end
*)
let not_clearly_irrelevant confl d =
Disj.for_all
(fun p -> Conflict.exists confl (fun q -> not (Disj.implies1 q d)) p) d
let simplify_formula confl f =
Formula.filter (fun d -> not_clearly_irrelevant confl d) f
type flatten_data = {
f_computed : bool PTbl.t; f_flatten_deps : dependencies;
f_dist : pool; f_deps : dependencies; f_confl : Conflict.t }
let rec flatten_deps data visited l =
Formula.fold
(fun d (l, r) ->
let (l', r') =
Disj.fold
(fun i (l, r) ->
(*
sample (fun () -> Format.eprintf "(2) %a@." (Formula.print data.f_dist) l);
*)
let (l', r') = flatten_dep data visited i in
(simplify_formula data.f_confl (Formula.disj l' l),
PSet.union r r'))
d (Formula._false, r)
in
(Formula.conj l' l, r'))
l (Formula._true, PSet.empty)
and flatten_dep data visited i =
let res =
if PTbl.get data.f_computed i then
(PTbl.get data.f_flatten_deps i, PSet.empty)
else
let res =
if List.mem i visited then
(Formula._true, PSet.singleton i)
else begin
let (l, r) =
flatten_deps data (i :: visited) (PTbl.get data.f_deps i)
in
let r = PSet.remove i r in
if Conflict.has data.f_confl i then
(Formula.conj (Formula.lit i) l, r)
else
(l, r)
end
in
(* Only cache the result if it is unconditionally true *)
if PSet.is_empty (snd res) then begin
PTbl.set data.f_flatten_deps i (fst res);
PTbl.set data.f_computed i true
end;
res
in
(*
sample (fun () -> Format.eprintf "(1) %a@." (Formula.print data.f_dist) (fst res));
*)
res
let flatten_dependencies dist deps confl =
let data =
{ f_flatten_deps = PTbl.create dist Formula._true;
f_computed = PTbl.create dist false;
f_dist = dist; f_deps = deps; f_confl = confl }
in
PTbl.iteri (fun p _ -> ignore (flatten_dep data [] p)) data.f_computed;
data.f_flatten_deps
(****)
let remove_redundant_conflicts dist deps confl =
let conj_deps p =
let f = PTbl.get deps p in
Formula.fold
(fun d s -> match Disj.to_lit d with Some p -> PSet.add p s | None -> s)
f PSet.empty
in
let try_remove_conflict p1 p2 =
let f1 = PTbl.get deps p1 in
let d2 = conj_deps p2 in
if
Formula.exists
(fun d1 ->
Disj.for_all
(fun q1 ->
PSet.exists
(fun q2 ->
(p1 <> q1 || p2 <> q2) &&
(p1 <> q2 || p2 <> q1) &&
Conflict.check confl q1 q2)
d2)
d1)
f1
then begin
(*
Format.eprintf "%a ## %a@."
(Package.print_name dist) p1 (Package.print_name dist) p2;
*)
Conflict.remove confl p1 p2
end
in
Conflict.iter confl try_remove_conflict;
Conflict.iter confl (fun p1 p2 -> try_remove_conflict p2 p1)
(****)
let remove_self_conflicts dist deps confl =
let clearly_broken p f =
Formula.exists
(fun d ->
match Disj.to_lit d with
Some q -> Conflict.check confl p q
| None -> false)
f
in
let changed = ref false in
let deps =
PTbl.mapi
(fun p f ->
if clearly_broken p f then begin
Format.printf "self conflict: %a@." (Package.print_name dist) p;
changed := true; Formula._false
end else
f)
deps
in
(deps, !changed)
(****)
let remove_clearly_irrelevant_deps confl deps =
PTbl.map (simplify_formula confl) deps
let is_composition add_dependency (*dist*) confl deps p d0 =
let f = PTbl.get deps p in
Formula.exists
(fun d' ->
not (Disj.equiv d0 d') && not (Disj.equiv (Disj.lit p) d') &&
let s = Disj.diff d0 d' in
Disj.exists
(fun q ->
let d = if Disj.implies1 q d0 then Disj.disj1 q s else s in
Formula.exists
(fun d'' ->
let res =
Disj.implies d d'' &&
not_clearly_irrelevant confl (Disj.cut d' q d'')
in
(*
if res then Format.eprintf "%a %a@." (Package.print_name dist) p (Package.print_name dist) q;
*)
if res then begin add_dependency p q; add_dependency p p end;
res)
(PTbl.get deps q))
d')
f
let possibly_irrelevant confl deps d =
Disj.exists
(fun q ->
Conflict.for_all confl
(fun r ->
Formula.exists
(fun d' ->
Disj.implies d' d && not (Disj.implies1 q d'))
(PTbl.get deps r))
q)
d
let remove_irrelevant_deps dist confl deps blacklist =
let deps = PTbl.copy deps in
let removed_deps = PTbl.create dist Formula._true in
let dependencies = PTbl.create dist PSet.empty in
let considered = PTbl.create dist false in
let in_queue = PTbl.create dist false in
let queue = Queue.create () in
let push p =
if not (PTbl.get in_queue p) then begin
Queue.push p queue;
PTbl.set in_queue p true
end
in
let add_dependency p q =
if debug_irrelevant () then
Format.eprintf "YY %a => %a@."
(Package.print_name dist) p (Package.print_name dist) q;
PTbl.set dependencies q (PSet.add p (PTbl.get dependencies q));
if not (PTbl.get considered q) then push q
in
let rec dequeue f =
try
let p = Queue.pop queue in
PTbl.set in_queue p false;
PTbl.set considered p true;
let changed = f p in
if changed then begin
let s = PTbl.get dependencies p in
PTbl.set dependencies p PSet.empty;
if PSet.mem p s then push p;
PSet.iter push s
end;
dequeue f
with Queue.Empty ->
()
in
let check_all f =
PTbl.iteri (fun p c -> if not c then begin push p; dequeue f end)
considered
in
check_all
(fun p ->
let changed = ref false in
let f = PTbl.get deps p in
let count f = Formula.fold (fun _ n -> n + 1) f 0 in
PTbl.set deps p
(Formula.filter
(fun d ->
let remove =
Disj.cardinal d > 1 &&
not (Disj.Set.mem d blacklist) &&
possibly_irrelevant confl deps d &&
not (is_composition add_dependency confl deps p d)
in
if remove then begin
changed := true;
PTbl.set removed_deps p
(Formula.conj (PTbl.get removed_deps p) (Formula.of_disj d))
end;
not remove)
f);
if debug_irrelevant () then
Format.eprintf "XXX %a %b (%d %d)@."
(Package.print_name dist) p !changed
(count f) (count (PTbl.get deps p));
!changed);
(deps, removed_deps)
let flatten_and_simplify ?(aggressive=false) dist deps0 confl =
let confl = Conflict.copy confl in
let t = Unix.gettimeofday () in
let deps = flatten_dependencies dist deps0 confl in
let rec remove_conflicts deps =
let (deps, changed) = remove_self_conflicts dist deps confl in
remove_redundant_conflicts dist deps confl;
let deps = flatten_dependencies dist deps confl in
if changed then remove_conflicts deps else deps
in
let deps =
if aggressive then
remove_conflicts deps
else begin
remove_redundant_conflicts dist deps confl;
remove_clearly_irrelevant_deps confl deps
end
in
let rec try_remove_deps blacklist deps =
let (deps', removed_deps) =
remove_irrelevant_deps dist confl deps blacklist in
let problems = ref Disj.Set.empty in
PTbl.iteri
(fun p f ->
if not (Formula.implies Formula._true f) then begin
Formula.iter (PTbl.get deps0 p)
(fun d' ->
Disj.iter d'
(fun q ->
Formula.iter (PTbl.get removed_deps q)
(fun d'' ->
if
Formula.exists (fun d -> Disj.implies d'' d) f
then begin
problems :=
Disj.Set.add d'' !problems;
(*
Format.eprintf "XXXX %a => %a => %a (%a)@." (Package.print_name dist) p (Package.print_name dist) q (Disj.print dist) d''
(Formula.print dist) f
*)
end)))
end)
deps';
if Disj.Set.is_empty !problems then
deps'
else
try_remove_deps (Disj.Set.union blacklist !problems) deps
in
let t' = Unix.gettimeofday () in
let deps = try_remove_deps Disj.Set.empty deps in
if debug_time () then
Format.eprintf " Removing irrelevant deps: %fs@."
(Unix.gettimeofday () -. t');
if debug_time () then
Format.eprintf "Flattening: %fs@." (Unix.gettimeofday () -. t);
(deps, confl)
end
|