1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
|
/* $Id: CoinPresolveSingleton.cpp 2083 2019-01-06 19:38:09Z unxusr $ */
// Copyright (C) 2002, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#include <stdio.h>
#include <math.h>
#include "CoinHelperFunctions.hpp"
#include "CoinPresolveMatrix.hpp"
#include "CoinPresolveEmpty.hpp" // for DROP_COL/DROP_ROW
#include "CoinPresolveFixed.hpp"
#include "CoinPresolveSingleton.hpp"
#if PRESOLVE_DEBUG > 0 || PRESOLVE_CONSISTENCY > 0
#include "CoinPresolvePsdebug.hpp"
#endif
#include "CoinMessage.hpp"
#include "CoinFinite.hpp"
/*
* Original comment:
*
* Transfers singleton row bound information to the corresponding column bounds.
* What I refer to as a row singleton would be called a doubleton
* in the paper, since my terminology doesn't refer to the slacks.
* In terms of the paper, we transfer the bounds of the slack onto
* the variable (vii) and then "substitute" the slack out of the problem
* (which is a noop).
*/
/*
Given blow(i) <= a(ij)x(j) <= b(i), we can transfer the bounds enforced by
the constraint to the column bounds l(j) and u(j) on x(j) and delete the
row.
You can think of this as a specialised instance of doubleton_action, where
the target variable is the logical that transforms an inequality to an
equality. Since the system doesn't have logicals at this point, the row is a
singleton.
At some time in the past, the main loop was written to scan all rows but
was limited in the number of rows it could process in one call. The
notFinished parameter is the only remaining vestige of this behaviour and
should probably be removed. For now, make sure it's forced to false for the
benefit of code that looks at the returned value. -- lh, 121015 --
*/
const CoinPresolveAction *
slack_doubleton_action::presolve(CoinPresolveMatrix *prob,
const CoinPresolveAction *next,
bool ¬Finished)
{
#if PRESOLVE_DEBUG > 0 || PRESOLVE_CONSISTENCY > 0
#if PRESOLVE_DEBUG > 0
std::cout << "Entering slack_doubleton_action::presolve." << std::endl;
#endif
#if PRESOLVE_CONSISTENCY > 0
presolve_consistent(prob);
presolve_links_ok(prob);
presolve_check_sol(prob);
presolve_check_nbasic(prob);
#endif
#endif
#if PRESOLVE_DEBUG > 0 || COIN_PRESOLVE_TUNING > 0
int startEmptyRows = prob->countEmptyRows();
int startEmptyColumns = prob->countEmptyCols();
#if COIN_PRESOLVE_TUNING > 0
double startTime = 0.0;
if (prob->tuning_) {
startTime = CoinCpuTime();
}
#endif
#endif
notFinished = false;
/*
Unpack the problem representation.
*/
double *colels = prob->colels_;
int *hrow = prob->hrow_;
CoinBigIndex *mcstrt = prob->mcstrt_;
int *hincol = prob->hincol_;
double *clo = prob->clo_;
double *cup = prob->cup_;
double *rowels = prob->rowels_;
const int *hcol = prob->hcol_;
const CoinBigIndex *mrstrt = prob->mrstrt_;
int *hinrow = prob->hinrow_;
double *rlo = prob->rlo_;
double *rup = prob->rup_;
/*
Rowstat is used to decide if the solution is present.
*/
unsigned char *rowstat = prob->rowstat_;
double *acts = prob->acts_;
double *sol = prob->sol_;
const unsigned char *integerType = prob->integerType_;
const double ztolzb = prob->ztolzb_;
int numberLook = prob->numberRowsToDo_;
int *look = prob->rowsToDo_;
bool fixInfeasibility = ((prob->presolveOptions_ & 0x4000) != 0);
action *actions = new action[numberLook];
int nactions = 0;
int *fixed_cols = prob->usefulColumnInt_;
int nfixed_cols = 0;
bool infeas = false;
/*
Walk the rows looking for singletons.
*/
for (int iLook = 0; iLook < numberLook; iLook++) {
int i = look[iLook];
if (hinrow[i] != 1)
continue;
int j = hcol[mrstrt[i]];
double aij = rowels[mrstrt[i]];
double lo = rlo[i];
double up = rup[i];
double abs_aij = fabs(aij);
/*
A tiny value of a(ij) invites numerical error, since the new bound will be
(something)/a(ij). Columns that are already fixed are also uninteresting.
*/
if (abs_aij < ZTOLDP2)
continue;
if (fabs(cup[j] - clo[j]) < ztolzb)
continue;
PRESOLVE_DETAIL_PRINT(printf("pre_singleton %dC %dR E\n", j, i));
/*
Get down to work. First create the postsolve action for row i / x(j).
*/
action *s = &actions[nactions];
nactions++;
s->col = j;
s->clo = clo[j];
s->cup = cup[j];
s->row = i;
s->rlo = rlo[i];
s->rup = rup[i];
s->coeff = aij;
#if PRESOLVE_DEBUG > 1
std::cout
<< " removing row " << i << ": " << rlo[i] << " <= " << aij
<< "*x(" << j << ") <= " << rup[i] << std::endl;
#endif
/*
Do the work of bounds transfer. Starting with
blow(i) <= a(ij)x(j) <= b(i),
we end up with
blow(i)/a(ij) <= x(j) <= b(i)/a(ij) a(ij) > 0
blow(i)/a(ij) >= x(j) >= b(i)/a(ij) a(ij) < 0
The code deals with a(ij) < 0 by swapping and negating the row bounds and
calculating with |a(ij)|. Be careful not to convert finite infinity to
finite, or vice versa.
*/
if (aij < 0.0) {
CoinSwap(lo, up);
lo = -lo;
up = -up;
}
if (lo <= -PRESOLVE_INF)
lo = -PRESOLVE_INF;
else {
lo /= abs_aij;
if (lo <= -PRESOLVE_INF)
lo = -PRESOLVE_INF;
}
if (up > PRESOLVE_INF)
up = PRESOLVE_INF;
else {
up /= abs_aij;
if (up > PRESOLVE_INF)
up = PRESOLVE_INF;
}
#if PRESOLVE_DEBUG > 2
std::cout
<< " l(" << j << ") = " << clo[j] << " ==> " << lo << ", delta "
<< (lo - clo[j]) << std::endl;
std::cout
<< " u(" << j << ") = " << cup[j] << " ==> " << up << ", delta "
<< (cup[j] - up) << std::endl;
#endif
/*
lo and up are now the new l(j) and u(j), respectively. If they're better than
the existing bounds, update. Have a care with integer variables --- don't let
numerical inaccuracy pull us off an integral bound.
*/
if (clo[j] < lo && lo > -1.0e100) {
// If integer be careful
if (integerType[j]) {
if (fabs(lo - floor(lo + 0.5)) < 0.000001)
lo = floor(lo + 0.5);
if (clo[j] < lo)
clo[j] = lo;
} else {
clo[j] = lo;
}
}
if (cup[j] > up && up < 1.0e100) {
if (integerType[j]) {
if (fabs(up - floor(up + 0.5)) < 0.000001)
up = floor(up + 0.5);
if (cup[j] > up)
cup[j] = up;
} else {
cup[j] = up;
}
}
/*
Is x(j) now fixed? Remember it for later.
*/
if (fabs(cup[j] - clo[j]) < ZTOLDP) {
fixed_cols[nfixed_cols++] = j;
}
/*
Is x(j) infeasible? Fix it if we're within the feasibility tolerance, or if
the user was so foolish as to request repair of infeasibility. Integer values
are preferred, if close enough.
If the infeasibility is too large to ignore, mark the problem infeasible and
head for the exit.
*/
if (lo > up) {
if (lo <= up + prob->feasibilityTolerance_ || fixInfeasibility) {
double nearest = floor(lo + 0.5);
if (fabs(nearest - lo) < 2.0 * prob->feasibilityTolerance_) {
lo = nearest;
up = nearest;
} else {
lo = up;
}
clo[j] = lo;
cup[j] = up;
} else {
prob->status_ |= 1;
prob->messageHandler()->message(COIN_PRESOLVE_COLINFEAS,
prob->messages())
<< j << lo << up << CoinMessageEol;
infeas = true;
break;
}
}
#if PRESOLVE_DEBUG > 1
printf("SINGLETON R-%d C-%d\n", i, j);
#endif
/*
Remove the row from the row-major representation.
*/
hinrow[i] = 0;
PRESOLVE_REMOVE_LINK(prob->rlink_, i);
rlo[i] = 0.0;
rup[i] = 0.0;
/*
Remove the row from this col in the column-major representation. It can
happen that this will empty the column, in which case we can delink it.
If the column isn't empty, queue it for further processing.
*/
presolve_delete_from_col(i, j, mcstrt, hincol, hrow, colels);
if (hincol[j] == 0) {
PRESOLVE_REMOVE_LINK(prob->clink_, j);
} else {
prob->addCol(j);
}
/*
Update the solution, if it's present. The trick is maintaining the right
number of basic variables. We've deleted a row, so we need to reduce the
basis by one.
There's a corner case that doesn't seem to be covered. What happens if
both x(j) and s(i) are nonbasic? The number of basic variables will not
be reduced. This is admittedly a pathological situation: It implies
that there's an existing bound l(j) or u(j) exactly equal to the bound
imposed by this constraint, so that x(j) can be nonbasic at bound and
the constraint can be simultaneously tight. -- lh, 121115 --
*/
if (rowstat) {
int basisChoice = 0;
int numberBasic = 0;
double movement = 0;
if (prob->columnIsBasic(j)) {
numberBasic++;
basisChoice = 2; // move to row to keep consistent
}
if (prob->rowIsBasic(i))
numberBasic++;
PRESOLVEASSERT(numberBasic > 0);
if (sol[j] <= clo[j] + ztolzb) {
movement = clo[j] - sol[j];
sol[j] = clo[j];
prob->setColumnStatus(j, CoinPrePostsolveMatrix::atLowerBound);
} else if (sol[j] >= cup[j] - ztolzb) {
movement = cup[j] - sol[j];
sol[j] = cup[j];
prob->setColumnStatus(j, CoinPrePostsolveMatrix::atUpperBound);
} else {
basisChoice = 1;
}
if (numberBasic > 1 || basisChoice == 1)
prob->setColumnStatus(j, CoinPrePostsolveMatrix::basic);
else if (basisChoice == 2)
prob->setRowStatus(i, CoinPrePostsolveMatrix::basic);
if (movement) {
const CoinBigIndex &kcs = mcstrt[j];
const CoinBigIndex kce = kcs + hincol[j];
for (CoinBigIndex kcol = kcs; kcol < kce; kcol++) {
int k = hrow[kcol];
PRESOLVEASSERT(hinrow[k] > 0);
acts[k] += movement * colels[kcol];
}
}
}
}
/*
Done with processing. Time to deal with the results. First add the postsolve
actions for the singletons to the postsolve list. Then call
remove_fixed_action to handle variables that were fixed during the loop.
(We've already adjusted the solution, so make_fixed_action is not needed.)
*/
if (!infeas && nactions) {
#if PRESOLVE_SUMMARY
std::cout
<< "SINGLETON ROWS: " << nactions << std::endl;
#endif
action *save_actions = new action[nactions];
CoinMemcpyN(actions, nactions, save_actions);
next = new slack_doubleton_action(nactions, save_actions, next);
if (nfixed_cols)
next = remove_fixed_action::presolve(prob, fixed_cols, nfixed_cols, next);
}
delete[] actions;
#if COIN_PRESOLVE_TUNING > 0
double thisTime = 0.0;
if (prob->tuning_)
thisTime = CoinCpuTime();
#endif
#if PRESOLVE_CONSISTENCY > 0 || PRESOLVE_DEBUG > 0
presolve_consistent(prob);
presolve_links_ok(prob);
presolve_check_sol(prob);
presolve_check_nbasic(prob);
#endif
#if PRESOLVE_DEBUG > 0 || COIN_PRESOLVE_TUNING > 0
int droppedRows = prob->countEmptyRows() - startEmptyRows;
int droppedColumns = prob->countEmptyCols() - startEmptyColumns;
std::cout
<< "Leaving slack_doubleton_action::presolve, "
<< droppedRows << " rows, " << droppedColumns
<< " columns dropped";
#if COIN_PRESOLVE_TUNING > 0
std::cout
<< " in " << (thisTime - startTime) << "s, total "
<< (thisTime - prob->startTime_);
#endif
std::cout << "." << std::endl;
#endif
return (next);
}
void slack_doubleton_action::postsolve(CoinPostsolveMatrix *prob) const
{
const action *const actions = actions_;
const int nactions = nactions_;
double *colels = prob->colels_;
int *hrow = prob->hrow_;
CoinBigIndex *mcstrt = prob->mcstrt_;
int *hincol = prob->hincol_;
CoinBigIndex *link = prob->link_;
double *clo = prob->clo_;
double *cup = prob->cup_;
double *sol = prob->sol_;
double *rcosts = prob->rcosts_;
unsigned char *colstat = prob->colstat_;
double *rlo = prob->rlo_;
double *rup = prob->rup_;
double *acts = prob->acts_;
double *rowduals = prob->rowduals_;
#if PRESOLVE_DEBUG
char *rdone = prob->rdone_;
std::cout
<< "Entering slack_doubleton_action::postsolve, "
<< nactions << " constraints to process." << std::endl;
presolve_check_sol(prob, 2, 2, 2);
presolve_check_nbasic(prob);
#endif
CoinBigIndex &free_list = prob->free_list_;
const double ztolzb = prob->ztolzb_;
for (const action *f = &actions[nactions - 1]; actions <= f; f--) {
int irow = f->row;
double lo0 = f->clo;
double up0 = f->cup;
double coeff = f->coeff;
int jcol = f->col;
rlo[irow] = f->rlo;
rup[irow] = f->rup;
clo[jcol] = lo0;
cup[jcol] = up0;
acts[irow] = coeff * sol[jcol];
/*
Create the row and restore the single coefficient, linking the new
coefficient at the start of the column.
*/
{
CoinBigIndex k = free_list;
assert(k >= 0 && k < prob->bulk0_);
free_list = link[free_list];
hrow[k] = irow;
colels[k] = coeff;
link[k] = mcstrt[jcol];
mcstrt[jcol] = k;
hincol[jcol]++;
}
/*
Since we are adding a row, we have to set the row status and dual
to satisfy complimentary slackness. We may also have to modify
the column status and reduced cost if bounds have been relaxed.
*/
if (!colstat) {
// ????
rowduals[irow] = 0.0;
} else {
if (prob->columnIsBasic(jcol)) {
/*
The variable is basic, hence the slack must be basic, hence the dual
for the row is zero. Relaxing the bounds on a basic variable
doesn't change anything.
*/
prob->setRowStatus(irow, CoinPrePostsolveMatrix::basic);
rowduals[irow] = 0.0;
} else if ((fabs(sol[jcol] - lo0) <= ztolzb && rcosts[jcol] >= 0) || (fabs(sol[jcol] - up0) <= ztolzb && rcosts[jcol] <= 0)) {
/*
The variable is nonbasic and the sign of the reduced cost is correct
for the bound. Again, the slack will be basic and the dual zero.
*/
prob->setRowStatus(irow, CoinPrePostsolveMatrix::basic);
rowduals[irow] = 0.0;
} else if (!(fabs(sol[jcol] - lo0) <= ztolzb) && !(fabs(sol[jcol] - up0) <= ztolzb)) {
/*
The variable was not basic but transferring bounds back to the
constraint has relaxed the column bounds. The variable will need to
be made basic. The constraint must then be tight and the dual must
be set so that the reduced cost of the variable becomes zero.
*/
prob->setColumnStatus(jcol, CoinPrePostsolveMatrix::basic);
prob->setRowStatusUsingValue(irow);
rowduals[irow] = rcosts[jcol] / coeff;
rcosts[jcol] = 0.0;
} else {
/*
The variable is at bound, but the reduced cost is wrong. Again
set the row dual to bring the reduced cost to zero. This implies
that the constraint is tight and the slack will be nonbasic.
*/
prob->setColumnStatus(jcol, CoinPrePostsolveMatrix::basic);
prob->setRowStatusUsingValue(irow);
rowduals[irow] = rcosts[jcol] / coeff;
rcosts[jcol] = 0.0;
}
}
#if PRESOLVE_DEBUG > 0 || PRESOLVE_CONSISTENCY > 0
rdone[irow] = SLACK_DOUBLETON;
#endif
}
#if PRESOLVE_CONSISTENCY > 0 || PRESOLVE_DEBUG > 0
presolve_check_threads(prob);
presolve_check_sol(prob, 2, 2, 2);
presolve_check_nbasic(prob);
#endif
#if PRESOLVE_DEBUG > 0
std::cout << "Leaving slack_doubleton_action::postsolve." << std::endl;
#endif
return;
}
/*
If we have a variable with one entry and no cost then we can
transform the row from E to G etc.
If there is a row objective region then we may be able to do
this even with a cost.
*/
const CoinPresolveAction *
slack_singleton_action::presolve(CoinPresolveMatrix *prob,
const CoinPresolveAction *next,
double *rowObjective)
{
double startTime = 0.0;
int startEmptyRows = 0;
int startEmptyColumns = 0;
if (prob->tuning_) {
startTime = CoinCpuTime();
startEmptyRows = prob->countEmptyRows();
startEmptyColumns = prob->countEmptyCols();
}
double *colels = prob->colels_;
int *hrow = prob->hrow_;
CoinBigIndex *mcstrt = prob->mcstrt_;
int *hincol = prob->hincol_;
//int ncols = prob->ncols_ ;
double *clo = prob->clo_;
double *cup = prob->cup_;
double *rowels = prob->rowels_;
int *hcol = prob->hcol_;
CoinBigIndex *mrstrt = prob->mrstrt_;
int *hinrow = prob->hinrow_;
int nrows = prob->nrows_;
double *rlo = prob->rlo_;
double *rup = prob->rup_;
// Existence of
unsigned char *rowstat = prob->rowstat_;
double *acts = prob->acts_;
double *sol = prob->sol_;
const unsigned char *integerType = prob->integerType_;
const double ztolzb = prob->ztolzb_;
double *dcost = prob->cost_;
//const double maxmin = prob->maxmin_ ;
#if PRESOLVE_DEBUG
std::cout << "Entering slack_singleton_action::presolve." << std::endl;
presolve_check_sol(prob);
presolve_check_nbasic(prob);
#endif
int numberLook = prob->numberColsToDo_;
int iLook;
int *look = prob->colsToDo_;
// Make sure we allocate at least one action
int maxActions = CoinMin(numberLook, nrows / 10) + 1;
action *actions = new action[maxActions];
int nactions = 0;
int *fixed_cols = new int[numberLook];
int nfixed_cols = 0;
int nWithCosts = 0;
double costOffset = 0.0;
for (iLook = 0; iLook < numberLook; iLook++) {
int iCol = look[iLook];
if (dcost[iCol])
continue;
if (hincol[iCol] == 1) {
int iRow = hrow[mcstrt[iCol]];
double coeff = colels[mcstrt[iCol]];
double acoeff = fabs(coeff);
if (acoeff < ZTOLDP2)
continue;
// don't bother with fixed cols
if (fabs(cup[iCol] - clo[iCol]) < ztolzb)
continue;
if (integerType && integerType[iCol]) {
// only possible if everything else integer and unit coefficient
// check everything else a bit later
if (acoeff != 1.0)
continue;
double currentLower = rlo[iRow];
double currentUpper = rup[iRow];
if (coeff == 1.0 && currentLower == 1.0 && currentUpper == 1.0) {
// leave if integer slack on sum x == 1
bool allInt = true;
for (CoinBigIndex j = mrstrt[iRow];
j < mrstrt[iRow] + hinrow[iRow]; j++) {
int iColumn = hcol[j];
double value = fabs(rowels[j]);
if (!integerType[iColumn] || value != 1.0) {
allInt = false;
break;
}
}
if (allInt)
continue; // leave as may help search
}
}
if (!prob->colProhibited(iCol)) {
double currentLower = rlo[iRow];
double currentUpper = rup[iRow];
if (!rowObjective) {
if (dcost[iCol])
continue;
} else if ((dcost[iCol] && currentLower != currentUpper) || rowObjective[iRow]) {
continue;
}
double newLower = currentLower;
double newUpper = currentUpper;
if (coeff < 0.0) {
if (currentUpper > 1.0e20 || cup[iCol] > 1.0e20) {
newUpper = COIN_DBL_MAX;
} else {
newUpper -= coeff * cup[iCol];
if (newUpper > 1.0e20)
newUpper = COIN_DBL_MAX;
}
if (currentLower < -1.0e20 || clo[iCol] < -1.0e20) {
newLower = -COIN_DBL_MAX;
} else {
newLower -= coeff * clo[iCol];
if (newLower < -1.0e20)
newLower = -COIN_DBL_MAX;
}
} else {
if (currentUpper > 1.0e20 || clo[iCol] < -1.0e20) {
newUpper = COIN_DBL_MAX;
} else {
newUpper -= coeff * clo[iCol];
if (newUpper > 1.0e20)
newUpper = COIN_DBL_MAX;
}
if (currentLower < -1.0e20 || cup[iCol] > 1.0e20) {
newLower = -COIN_DBL_MAX;
} else {
newLower -= coeff * cup[iCol];
if (newLower < -1.0e20)
newLower = -COIN_DBL_MAX;
}
}
if (integerType && integerType[iCol]) {
// only possible if everything else integer
if (newLower > -1.0e30) {
if (newLower != floor(newLower + 0.5))
continue;
}
if (newUpper < 1.0e30) {
if (newUpper != floor(newUpper + 0.5))
continue;
}
bool allInt = true;
for (CoinBigIndex j = mrstrt[iRow];
j < mrstrt[iRow] + hinrow[iRow]; j++) {
int iColumn = hcol[j];
double value = fabs(rowels[j]);
if (!integerType[iColumn] || value != floor(value + 0.5)) {
allInt = false;
break;
}
}
if (!allInt)
continue; // no good
}
if (nactions >= maxActions) {
maxActions += CoinMin(numberLook - iLook, maxActions);
action *temp = new action[maxActions];
memcpy(temp, actions, nactions * sizeof(action));
// changed as 4.6 compiler bug! CoinMemcpyN(actions,nactions,temp) ;
delete[] actions;
actions = temp;
}
action *s = &actions[nactions];
nactions++;
s->col = iCol;
s->clo = clo[iCol];
s->cup = cup[iCol];
s->row = iRow;
s->rlo = rlo[iRow];
s->rup = rup[iRow];
s->coeff = coeff;
presolve_delete_from_row(iRow, iCol, mrstrt, hinrow, hcol, rowels);
if (!hinrow[iRow])
PRESOLVE_REMOVE_LINK(prob->rlink_, iRow);
// put row on stack of things to do next time
prob->addRow(iRow);
#ifdef PRINTCOST
if (rowObjective && dcost[iCol]) {
printf("Singleton %d had coeff of %g in row %d - bounds %g %g - cost %g\n",
iCol, coeff, iRow, clo[iCol], cup[iCol], dcost[iCol]);
printf("Row bounds were %g %g now %g %g\n",
rlo[iRow], rup[iRow], newLower, newUpper);
}
#endif
// Row may be redundant but let someone else do that
rlo[iRow] = newLower;
rup[iRow] = newUpper;
if (rowstat && sol) {
// update solution and basis
if ((sol[iCol] < cup[iCol] - ztolzb && sol[iCol] > clo[iCol] + ztolzb) || prob->columnIsBasic(iCol))
prob->setRowStatus(iRow, CoinPrePostsolveMatrix::basic);
prob->setColumnStatusUsingValue(iCol);
}
// Force column to zero
clo[iCol] = 0.0;
cup[iCol] = 0.0;
if (rowObjective && dcost[iCol]) {
rowObjective[iRow] = -dcost[iCol] / coeff;
nWithCosts++;
// adjust offset
costOffset += currentLower * rowObjective[iRow];
prob->dobias_ -= currentLower * rowObjective[iRow];
}
if (sol) {
double movement;
if (fabs(sol[iCol] - clo[iCol]) < fabs(sol[iCol] - cup[iCol])) {
movement = clo[iCol] - sol[iCol];
sol[iCol] = clo[iCol];
} else {
movement = cup[iCol] - sol[iCol];
sol[iCol] = cup[iCol];
}
if (movement)
acts[iRow] += movement * coeff;
}
/*
Remove the row from this col in the col rep.and delink it.
*/
presolve_delete_from_col(iRow, iCol, mcstrt, hincol, hrow, colels);
assert(hincol[iCol] == 0);
PRESOLVE_REMOVE_LINK(prob->clink_, iCol);
//clo[iCol] = 0.0 ;
//cup[iCol] = 0.0 ;
fixed_cols[nfixed_cols++] = iCol;
//presolve_consistent(prob) ;
}
}
}
if (nactions) {
#if PRESOLVE_SUMMARY
printf("SINGLETON COLS: %d\n", nactions);
#endif
#ifdef COIN_DEVELOP
printf("%d singletons, %d with costs - offset %g\n", nactions,
nWithCosts, costOffset);
#endif
action *save_actions = new action[nactions];
CoinMemcpyN(actions, nactions, save_actions);
next = new slack_singleton_action(nactions, save_actions, next);
if (nfixed_cols)
next = make_fixed_action::presolve(prob, fixed_cols, nfixed_cols,
true, // arbitrary
next);
}
delete[] actions;
delete[] fixed_cols;
if (prob->tuning_) {
double thisTime = CoinCpuTime();
int droppedRows = prob->countEmptyRows() - startEmptyRows;
int droppedColumns = prob->countEmptyCols() - startEmptyColumns;
printf("CoinPresolveSingleton(3) - %d rows, %d columns dropped in time %g, total %g\n",
droppedRows, droppedColumns, thisTime - startTime, thisTime - prob->startTime_);
}
#if PRESOLVE_DEBUG
presolve_check_sol(prob);
presolve_check_nbasic(prob);
std::cout << "Leaving slack_singleton_action::presolve." << std::endl;
#endif
return (next);
}
void slack_singleton_action::postsolve(CoinPostsolveMatrix *prob) const
{
const action *const actions = actions_;
const int nactions = nactions_;
double *colels = prob->colels_;
int *hrow = prob->hrow_;
CoinBigIndex *mcstrt = prob->mcstrt_;
int *hincol = prob->hincol_;
CoinBigIndex *link = prob->link_;
// int ncols = prob->ncols_ ;
//double *rowels = prob->rowels_ ;
//int *hcol = prob->hcol_ ;
//CoinBigIndex *mrstrt = prob->mrstrt_ ;
//int *hinrow = prob->hinrow_ ;
double *clo = prob->clo_;
double *cup = prob->cup_;
double *rlo = prob->rlo_;
double *rup = prob->rup_;
double *sol = prob->sol_;
double *rcosts = prob->rcosts_;
double *acts = prob->acts_;
double *rowduals = prob->rowduals_;
double *dcost = prob->cost_;
//const double maxmin = prob->maxmin_ ;
unsigned char *colstat = prob->colstat_;
// unsigned char *rowstat = prob->rowstat_ ;
#if PRESOLVE_DEBUG
char *rdone = prob->rdone_;
std::cout << "Entering slack_singleton_action::postsolve." << std::endl;
presolve_check_sol(prob);
presolve_check_nbasic(prob);
#endif
CoinBigIndex &free_list = prob->free_list_;
const double ztolzb = prob->ztolzb_;
#ifdef CHECK_ONE_ROW
{
double act = 0.0;
for (int i = 0; i < prob->ncols_; i++) {
double solV = sol[i];
assert(solV >= clo[i] - ztolzb && solV <= cup[i] + ztolzb);
int j = mcstrt[i];
for (int k = 0; k < hincol[i]; k++) {
if (hrow[j] == CHECK_ONE_ROW) {
act += colels[j] * solV;
}
j = link[j];
}
}
assert(act >= rlo[CHECK_ONE_ROW] - ztolzb && act <= rup[CHECK_ONE_ROW] + ztolzb);
printf("start %g %g %g %g\n", rlo[CHECK_ONE_ROW], act, acts[CHECK_ONE_ROW], rup[CHECK_ONE_ROW]);
}
#endif
for (const action *f = &actions[nactions - 1]; actions <= f; f--) {
int iRow = f->row;
double lo0 = f->clo;
double up0 = f->cup;
double coeff = f->coeff;
int iCol = f->col;
assert(!hincol[iCol]);
#ifdef CHECK_ONE_ROW
if (iRow == CHECK_ONE_ROW)
printf("Col %d coeff %g old bounds %g,%g new %g,%g - new rhs %g,%g - act %g\n",
iCol, coeff, clo[iCol], cup[iCol], lo0, up0, f->rlo, f->rup, acts[CHECK_ONE_ROW]);
#endif
rlo[iRow] = f->rlo;
rup[iRow] = f->rup;
clo[iCol] = lo0;
cup[iCol] = up0;
double movement = 0.0;
// acts was without coefficient - adjust
acts[iRow] += coeff * sol[iCol];
if (acts[iRow] < rlo[iRow] - ztolzb)
movement = rlo[iRow] - acts[iRow];
else if (acts[iRow] > rup[iRow] + ztolzb)
movement = rup[iRow] - acts[iRow];
double cMove = movement / coeff;
sol[iCol] += cMove;
acts[iRow] += movement;
if (!dcost[iCol]) {
// and to get column feasible
cMove = 0.0;
if (sol[iCol] > cup[iCol] + ztolzb)
cMove = cup[iCol] - sol[iCol];
else if (sol[iCol] < clo[iCol] - ztolzb)
cMove = clo[iCol] - sol[iCol];
sol[iCol] += cMove;
acts[iRow] += cMove * coeff;
/*
* Have to compute status. At most one can be basic. It's possible that
both are nonbasic and nonbasic status must change.
*/
if (colstat) {
int numberBasic = 0;
if (prob->columnIsBasic(iCol))
numberBasic++;
if (prob->rowIsBasic(iRow))
numberBasic++;
#ifdef COIN_DEVELOP
if (numberBasic > 1)
printf("odd in singleton\n");
#endif
if (sol[iCol] > clo[iCol] + ztolzb && sol[iCol] < cup[iCol] - ztolzb) {
prob->setColumnStatus(iCol, CoinPrePostsolveMatrix::basic);
prob->setRowStatusUsingValue(iRow);
} else if (acts[iRow] > rlo[iRow] + ztolzb && acts[iRow] < rup[iRow] - ztolzb) {
prob->setRowStatus(iRow, CoinPrePostsolveMatrix::basic);
prob->setColumnStatusUsingValue(iCol);
} else if (numberBasic) {
prob->setRowStatus(iRow, CoinPrePostsolveMatrix::basic);
prob->setColumnStatusUsingValue(iCol);
} else {
prob->setRowStatusUsingValue(iRow);
prob->setColumnStatusUsingValue(iCol);
}
}
#if PRESOLVE_DEBUG > 1
printf("SLKSING: %d = %g restored %d lb = %g ub = %g.\n",
iCol, sol[iCol], prob->getColumnStatus(iCol), clo[iCol], cup[iCol]);
#endif
} else {
// must have been equality row
assert(rlo[iRow] == rup[iRow]);
double cost = rcosts[iCol];
// adjust for coefficient
cost -= rowduals[iRow] * coeff;
bool basic = true;
if (fabs(sol[iCol] - cup[iCol]) < ztolzb && cost < -1.0e-6)
basic = false;
else if (fabs(sol[iCol] - clo[iCol]) < ztolzb && cost > 1.0e-6)
basic = false;
//printf("Singleton %d had coeff of %g in row %d (dual %g) - bounds %g %g - cost %g, (dj %g)\n",
// iCol,coeff,iRow,rowduals[iRow],clo[iCol],cup[iCol],dcost[iCol],rcosts[iCol]) ;
//if (prob->columnIsBasic(iCol))
//printf("column basic! ") ;
//if (prob->rowIsBasic(iRow))
//printf("row basic ") ;
//printf("- make column basic %s\n",basic ? "yes" : "no") ;
if (basic && !prob->rowIsBasic(iRow)) {
#ifdef PRINTCOST
printf("Singleton %d had coeff of %g in row %d (dual %g) - bounds %g %g - cost %g, (dj %g - new %g)\n",
iCol, coeff, iRow, rowduals[iRow], clo[iCol], cup[iCol], dcost[iCol], rcosts[iCol], cost);
#endif
#ifdef COIN_DEVELOP
if (prob->columnIsBasic(iCol))
printf("column basic!\n");
#endif
basic = false;
}
if (fabs(rowduals[iRow]) > 1.0e-6 && prob->rowIsBasic(iRow))
basic = true;
if (basic) {
// Make basic have zero reduced cost
rowduals[iRow] = rcosts[iCol] / coeff;
rcosts[iCol] = 0.0;
} else {
rcosts[iCol] = cost;
//rowduals[iRow]=0.0 ;
}
if (colstat) {
if (basic) {
if (!prob->rowIsBasic(iRow)) {
#if 0
// find column in row
int jCol=-1 ;
//for (CoinBigIndex j=mrstrt[iRow];j<mrstrt
for (int k=0;k<prob->ncols0_;k++) {
CoinBigIndex j=mcstrt[k] ;
for (int i=0;i<hincol[k];i++) {
if (hrow[k]==iRow) {
break ;
}
k=link[k] ;
}
}
#endif
} else {
prob->setColumnStatus(iCol, CoinPrePostsolveMatrix::basic);
}
prob->setRowStatusUsingValue(iRow);
} else {
//prob->setRowStatus(iRow,CoinPrePostsolveMatrix::basic) ;
prob->setColumnStatusUsingValue(iCol);
}
}
}
#if 0
int nb=0 ;
int kk ;
for (kk=0;kk<prob->nrows_;kk++)
if (prob->rowIsBasic(kk))
nb++ ;
for (kk=0;kk<prob->ncols_;kk++)
if (prob->columnIsBasic(kk))
nb++ ;
assert (nb==prob->nrows_) ;
#endif
// add new element
{
CoinBigIndex k = free_list;
assert(k >= 0 && k < prob->bulk0_);
free_list = link[free_list];
hrow[k] = iRow;
colels[k] = coeff;
link[k] = mcstrt[iCol];
mcstrt[iCol] = k;
}
hincol[iCol]++; // right?
#ifdef CHECK_ONE_ROW
{
double act = 0.0;
for (int i = 0; i < prob->ncols_; i++) {
double solV = sol[i];
assert(solV >= clo[i] - ztolzb && solV <= cup[i] + ztolzb);
int j = mcstrt[i];
for (int k = 0; k < hincol[i]; k++) {
if (hrow[j] == CHECK_ONE_ROW) {
//printf("c %d el %g sol %g old act %g new %g\n",
// i,colels[j],solV,act, act+colels[j]*solV) ;
act += colels[j] * solV;
}
j = link[j];
}
}
assert(act >= rlo[CHECK_ONE_ROW] - ztolzb && act <= rup[CHECK_ONE_ROW] + ztolzb);
printf("rhs now %g %g %g %g\n", rlo[CHECK_ONE_ROW], act, acts[CHECK_ONE_ROW], rup[CHECK_ONE_ROW]);
}
#endif
#if PRESOLVE_DEBUG
rdone[iRow] = SLACK_SINGLETON;
#endif
}
#if PRESOLVE_DEBUG
presolve_check_sol(prob);
presolve_check_nbasic(prob);
std::cout << "Leaving slack_singleton_action::postsolve." << std::endl;
#endif
return;
}
/* vi: softtabstop=2 shiftwidth=2 expandtab tabstop=2
*/
|