File: mathHelpers.cpp

package info (click to toggle)
collada2gltf 20140924-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 4,688 kB
  • sloc: cpp: 33,763; ansic: 5,313; python: 29; makefile: 6
file content (286 lines) | stat: -rw-r--r-- 11,032 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
// Copyright (c) Fabrice Robinet
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//
//  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "GLTF.h"
#include "../GLTFOpenCOLLADA.h"
#include "mathHelpers.h"

using namespace rapidjson;
#if __cplusplus <= 199711L
using namespace std::tr1;
#endif
using namespace std;

namespace GLTF
{
    enum unmatrix_indices {
        U_SCALEX,
        U_SCALEY,
        U_SCALEZ,
        U_SHEARXY,
        U_SHEARXZ,
        U_SHEARYZ,
        U_ROTATEX,
        U_ROTATEY,
        U_ROTATEZ,
        U_ROTATEW,
        U_TRANSX,
        U_TRANSY,
        U_TRANSZ,
        
    };
    
    /* Originally from: http://tog.acm.org/resources/GraphicsGems/gemsii/unmatrix.c
     * Simplified version without Shear and Perspective decomposition
     *
     * unmatrix.c - given a 4x4 matrix, decompose it into standard operations.
     *
     * Author:	Spencer W. Thomas
     * 		University of Michigan
     */
    static bool unmatrix(COLLADABU::Math::Matrix4 mat, double *tran)
    {
        int i, j;
        COLLADABU::Math::Matrix4 locmat;
        COLLADABU::Math::Matrix4 pmat, invpmat, tinvpmat;
        COLLADABU::Math::Vector3 row[3], pdum3;
        
        locmat = mat;
        
        /* Normalize the matrix. */
        for ( i=0; i<4;i++ )
            for ( j=0; j<4; j++ )
                locmat.setElement(i, j, locmat.getElement(i,j) / locmat[3][3]) ;
        /* pmat is used to solve for perspective, but it also provides
         * an easy way to test for singularity of the upper 3x3 component.
         */
        pmat = locmat;
        for ( i=0; i<3; i++ )
            pmat.setElement(i,3, 0);
        pmat.setElement(3,3, 1);
        
        if ( pmat.determinant() == 0.0 )
            return false;
        
        /* First, isolate perspective.  This is the messiest. */
        if ( locmat.getElement(0,3) != 0 ||
            locmat.getElement(1,3) != 0 ||
            locmat.getElement(2,3) != 0 ) {
            locmat.setElement(0, 3,     0);
            locmat.setElement(1, 3,     0);
            locmat.setElement(2, 3,     0);
            locmat.setElement(3, 3,     1);
        }
        
        for ( i=0; i<3; i++ ) {
            tran[U_TRANSX + i] = locmat[3][i];
            locmat.setElement(3,i,   0);
        }
        
        /* Now get scale and shear. */
        for ( i=0; i<3; i++ ) {
            row[i].x = locmat[i][0];
            row[i].y = locmat[i][1];
            row[i].z = locmat[i][2];
        }
        
        /* Compute X scale factor and normalize first row. */
        tran[U_SCALEX] = row[0].length();
        row[0].normalise();
        /* Compute XY shear factor and make 2nd row orthogonal to 1st. */
        //tran[U_SHEARXY] = row[0].Dot(row[1]);
        //(void)V3Combine(&row[1], &row[0], &row[1], 1.0, -tran[U_SHEARXY]);
        
        /* Now, compute Y scale and normalize 2nd row. */
        tran[U_SCALEY] = row[1].length();
        row[1].normalise();
        // tran[U_SHEARXY] /= tran[U_SCALEY];
        
        /* Compute XZ and YZ shears, orthogonalize 3rd row. */
        //tran[U_SHEARXZ] = V3Dot(&row[0], &row[2]);
        //(void)V3Combine(&row[2], &row[0], &row[2], 1.0, -tran[U_SHEARXZ]);
        //tran[U_SHEARYZ] = V3Dot(&row[1], &row[2]);
        //(void)V3Combine(&row[2], &row[1], &row[2], 1.0, -tran[U_SHEARYZ]);
        
        /* Next, get Z scale and normalize 3rd row. */
        tran[U_SCALEZ] = row[2].length();
        row[2].normalise();
        //tran[U_SHEARXZ] /= tran[U_SCALEZ];
        //tran[U_SHEARYZ] /= tran[U_SCALEZ];
        
        /* At this point, the matrix (in rows[]) is orthonormal.
         * Check for a coordinate system flip.  If the determinant
         * is -1, then negate the matrix and the scaling factors.
         */
        
        if ( row[0].dotProduct(row[1].crossProduct(row[2]) ) < 0 ) {
            for ( i = 0; i < 3; i++ ) {
                tran[U_SCALEX+i] *= -1;
                row[i].x *= -1;
                row[i].y *= -1;
                row[i].z *= -1;
            }
        }
        
        COLLADABU::Math::Matrix3 amat3( row[0][0], row[1][0], row[2][0],
                                       row[0][1], row[1][1], row[2][1],
                                       row[0][2], row[1][2], row[2][2]);
        COLLADABU::Math::Real angle;
        COLLADABU::Math::Vector3 axis;
        //COLLADABU::Math::Quaternion aquat = QuaternionFromMatrix(amat3);
        COLLADABU::Math::Quaternion aquat;
        aquat.fromRotationMatrix(amat3);
        aquat.normalise();
        aquat.toAngleAxis(angle, axis);
        tran[U_ROTATEX] = axis.x;
        tran[U_ROTATEY] = axis.y;
        tran[U_ROTATEZ] = axis.z;
        tran[U_ROTATEW] = angle;
        
        return true;
    }
    
    void decomposeMatrix(COLLADABU::Math::Matrix4 &matrix, float *translation, float *rotation, float *scale) {
        COLLADABU::Math::Matrix4 tr = matrix.transpose();
        tr.setElement(0,3, 0);
        tr.setElement(1,3, 0);
        tr.setElement(2,3, 0);
        tr.setElement(3,3, 1);
        double tran[20];
        
        if (!unmatrix(tr, tran)) {
            printf("WARNING: matrix can't be decomposed \n");
        }
        
        if (translation) {
            translation[0] = (float)tran[U_TRANSX];
            translation[1] = (float)tran[U_TRANSY];
            translation[2] = (float)tran[U_TRANSZ];
        }
        
        if (rotation) {
            rotation[0] = (float)tran[U_ROTATEX];
            rotation[1] = (float)tran[U_ROTATEY];
            rotation[2] = (float)tran[U_ROTATEZ];
            rotation[3] = (float)tran[U_ROTATEW];
        }
        
        if (scale) {
            scale[0] = (float)tran[U_SCALEX];
            scale[1] = (float)tran[U_SCALEY];
            scale[2] = (float)tran[U_SCALEZ];
        }
    }
    
    //converted to C++ from gl-matrix by Brandon Jones ( https://github.com/toji/gl-matrix )
    void buildLookAtMatrix(COLLADAFW::Lookat *lookat, COLLADABU::Math::Matrix4& matrix)
    {
        assert(lookat);
        
        const COLLADABU::Math::Vector3& eye = lookat->getEyePosition();
        const COLLADABU::Math::Vector3& center = lookat->getInterestPointPosition();
        const COLLADABU::Math::Vector3& up = lookat->getUpAxisDirection();
        
        if ((eye.x == center.x) && (eye.y == center.y) && (eye.z == center.z)) {
            matrix = COLLADABU::Math::Matrix4::IDENTITY;
            return;
        }
        
        COLLADABU::Math::Vector3 z = (eye - center);
        z.normalise(); // TODO: OpenCOLLADA typo should be normalize (with a z).
        COLLADABU::Math::Vector3 x = up.crossProduct(z);
        x.normalise();
        COLLADABU::Math::Vector3 y = z.crossProduct(x);
        y.normalise();
        
        matrix.setAllElements(x.x,
                              y.x,
                              z.x,
                              0,
                              x.y,
                              y.y,
                              z.y,
                              0,
                              x.z,
                              y.z,
                              z.z,
                              0,
                              -(x.x * eye.x + x.y  * eye.y + x.z * eye.z),
                              -(y.x * eye.x + y.y * eye.y + y.z * eye.z),
                              -(z.x * eye.x + z.y * eye.y + z.z * eye.z),
                              1);
        matrix = matrix.inverse();
        matrix = matrix.transpose();
    }
    
    BBOX::BBOX() {
        this->_min = COLLADABU::Math::Vector3(DBL_MAX, DBL_MAX, DBL_MAX);
        this->_max = COLLADABU::Math::Vector3(DBL_MIN, DBL_MIN, DBL_MIN);
    }
    
    BBOX::BBOX(const COLLADABU::Math::Vector3 &min, const COLLADABU::Math::Vector3 &max) {
        this->_min = min;
        this->_max = max;
    }
    
    const COLLADABU::Math::Vector3&  BBOX::getMin3() {
        return this->_min;
    }
    
    const COLLADABU::Math::Vector3& BBOX::getMax3() {
        return this->_max;
    }
    
    void BBOX::merge(BBOX* bbox) {
        this->_min.makeFloor(bbox->getMin3());
        this->_max.makeCeil(bbox->getMax3());
    }
    
    void BBOX::transform(const COLLADABU::Math::Matrix4& mat4) {
        COLLADABU::Math::Vector3 min = COLLADABU::Math::Vector3(DBL_MAX, DBL_MAX, DBL_MAX);
        COLLADABU::Math::Vector3 max = COLLADABU::Math::Vector3(DBL_MIN, DBL_MIN, DBL_MIN);
        
        COLLADABU::Math::Vector3 pt0 = mat4 * COLLADABU::Math::Vector3(this->_min.x, this->_min.y, this->_min.z);
        COLLADABU::Math::Vector3 pt1 = mat4 * COLLADABU::Math::Vector3(this->_max.x, this->_min.y, this->_min.z);
        COLLADABU::Math::Vector3 pt2 = mat4 * COLLADABU::Math::Vector3(this->_min.x, this->_max.y, this->_min.z);
        COLLADABU::Math::Vector3 pt3 = mat4 * COLLADABU::Math::Vector3(this->_max.x, this->_max.y, this->_min.z);
        COLLADABU::Math::Vector3 pt4 = mat4 * COLLADABU::Math::Vector3(this->_min.x, this->_min.y, this->_max.z);
        COLLADABU::Math::Vector3 pt5 = mat4 * COLLADABU::Math::Vector3(this->_max.x, this->_min.y, this->_max.z);
        COLLADABU::Math::Vector3 pt6 = mat4 * COLLADABU::Math::Vector3(this->_min.x, this->_max.y, this->_max.z);
        COLLADABU::Math::Vector3 pt7 = mat4 * COLLADABU::Math::Vector3(this->_max.x, this->_max.y, this->_max.z);
        
        min.makeFloor(pt0); max.makeCeil(pt0);
        min.makeFloor(pt1); max.makeCeil(pt1);
        min.makeFloor(pt2); max.makeCeil(pt2);
        min.makeFloor(pt3); max.makeCeil(pt3);
        min.makeFloor(pt4); max.makeCeil(pt4);
        min.makeFloor(pt5); max.makeCeil(pt5);
        min.makeFloor(pt6); max.makeCeil(pt6);
        min.makeFloor(pt7); max.makeCeil(pt7);
        
        this->_min = min;
        this->_max = max;
    }
    

}