1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
|
// Copyright (c) Fabrice Robinet
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "GLTF.h"
#include <stdio.h>
#include <stdlib.h>
#include "geometryHelpers.h"
using namespace rapidjson;
#if __cplusplus <= 199711L
using namespace std::tr1;
#endif
using namespace std;
namespace GLTF
{
unsigned int* createTrianglesFromPolylist(unsigned int *verticesCount /* array containing the count for each array of indices per face */,
unsigned int *polylist /* array containing the indices of a face */,
unsigned int count /* count of entries within the verticesCount array */,
unsigned int *triangulatedIndicesCount /* number of indices in returned array */) {
//destination buffer size
unsigned int indicesCount = 0;
for (unsigned int i = 0 ; i < count ; i++) {
indicesCount += (verticesCount[i] - 2) * 3;
}
if (triangulatedIndicesCount) {
*triangulatedIndicesCount = indicesCount;
}
unsigned int *triangleIndices = (unsigned int*)malloc(sizeof(unsigned int) * indicesCount);
unsigned int offsetDestination = 0;
unsigned int offsetSource = 0;
for (unsigned int i = 0 ; i < count ; i++) {
unsigned int trianglesCount = verticesCount[i] - 2;
unsigned int firstIndex = polylist[0];
offsetSource = 1;
for (unsigned k = 0 ; k < trianglesCount ; k++) {
triangleIndices[offsetDestination] = firstIndex;
triangleIndices[offsetDestination + 1] = polylist[offsetSource];
triangleIndices[offsetDestination + 2] = polylist[offsetSource + 1];
//printf("%d %d %d\n",triangleIndices[offsetDestination], triangleIndices[offsetDestination +1], triangleIndices[offsetDestination +2]);
offsetSource += 1;
offsetDestination += 3;
}
offsetSource += 1;
polylist += verticesCount[i];
}
return triangleIndices;
}
std::string keyWithSemanticAndSet(GLTF::Semantic semantic, unsigned int indexSet)
{
std::string semanticIndexSetKey = "";
semanticIndexSetKey += kSemantic;
semanticIndexSetKey += GLTFUtils::toString(semantic);
semanticIndexSetKey += ":indexSet";
semanticIndexSetKey += GLTFUtils::toString(indexSet);
return semanticIndexSetKey;
}
//---- GLTFPrimitiveRemapInfos -------------------------------------------------------------
// FIXME: put better comment here
//RemappedMeshIndexes[0] = count ; RemappedMeshIndexes[1+] original indexes (used for hash code)
struct RemappedMeshIndexesHash {
inline size_t operator()(unsigned int* remappedMeshIndexes) const
{
size_t hash = 0;
size_t count = (size_t)remappedMeshIndexes[0];
for (size_t i = 0 ; i < count ; i++) {
hash += (size_t)remappedMeshIndexes[i + 1 /* skip count */];
}
return hash;
}
};
struct RemappedMeshIndexesEq {
inline bool operator()(unsigned int* k1, unsigned int* k2) const {
size_t count = (size_t)k1[0];
if (count != (size_t)k2[0])
return false;
for (size_t i = 0 ; i < count ; i++) {
if (k1[i + 1] != k2[i + 1])
return false;
}
return true;
}
};
typedef unordered_map<unsigned int* ,unsigned int /* index of existing n-uplet of indices */, RemappedMeshIndexesHash, RemappedMeshIndexesEq> RemappedMeshIndexesHashmap;
typedef unordered_map<unsigned int ,unsigned int> IndicesMap;
//FIXME: this could be just an intermediate anonymous(no id) GLTFBuffer
class GLTFPrimitiveRemapInfos
{
public:
GLTFPrimitiveRemapInfos(unsigned int* generatedIndices, unsigned int generatedIndicesCount, unsigned int *originalCountAndIndexes);
virtual ~GLTFPrimitiveRemapInfos();
unsigned int generatedIndicesCount();
unsigned int* generatedIndices();
unsigned int* originalCountAndIndexes();
private:
unsigned int _generatedIndicesCount;
unsigned int* _generatedIndices;
unsigned int* _originalCountAndIndexes;
};
//---- GLTFPrimitiveRemapInfos -------------------------------------------------------------
GLTFPrimitiveRemapInfos::GLTFPrimitiveRemapInfos(unsigned int* generatedIndices, unsigned int generatedIndicesCount, unsigned int *originalCountAndIndexes):
_generatedIndicesCount(generatedIndicesCount),
_generatedIndices(generatedIndices),
_originalCountAndIndexes(originalCountAndIndexes)
{
}
GLTFPrimitiveRemapInfos::~GLTFPrimitiveRemapInfos()
{
if (this->_generatedIndices)
free(this->_generatedIndices);
if (this->_originalCountAndIndexes)
free(this->_originalCountAndIndexes);
}
unsigned int GLTFPrimitiveRemapInfos::generatedIndicesCount()
{
return _generatedIndicesCount;
}
unsigned int* GLTFPrimitiveRemapInfos::generatedIndices()
{
return _generatedIndices;
}
unsigned int* GLTFPrimitiveRemapInfos::originalCountAndIndexes()
{
return _originalCountAndIndexes;
}
typedef struct {
unsigned char* remappedBufferData;
//size_t remappedMeshAttributeByteOffset;
size_t remappedMeshAttributeByteStride;
unsigned char* originalBufferData;
//size_t originalMeshAttributeByteOffset;
size_t originalMeshAttributeByteStride;
size_t elementByteLength;
} MeshAttributesBufferInfos;
static MeshAttributesBufferInfos* createMeshAttributesBuffersInfos(MeshAttributeVector allOriginalMeshAttributes ,MeshAttributeVector allRemappedMeshAttributes, unsigned int*indicesInRemapping, unsigned int count)
{
MeshAttributesBufferInfos* allBufferInfos = (MeshAttributesBufferInfos*)malloc(count * sizeof(MeshAttributesBufferInfos));
for (size_t meshAttributeIndex = 0 ; meshAttributeIndex < count; meshAttributeIndex++) {
MeshAttributesBufferInfos *bufferInfos = &allBufferInfos[meshAttributeIndex];
shared_ptr <GLTF::GLTFAccessor> remappedMeshAttribute = allRemappedMeshAttributes[indicesInRemapping[meshAttributeIndex]];
shared_ptr <GLTF::GLTFAccessor> originalMeshAttribute = allOriginalMeshAttributes[indicesInRemapping[meshAttributeIndex]];
if (originalMeshAttribute->elementByteLength() != remappedMeshAttribute->elementByteLength()) {
// FIXME : report error
free(allBufferInfos);
return 0;
}
bufferInfos->remappedBufferData = (unsigned char*)remappedMeshAttribute->getBufferView()->getBufferDataByApplyingOffset();
bufferInfos->remappedMeshAttributeByteStride = remappedMeshAttribute->getByteStride();
bufferInfos->originalBufferData = (unsigned char*)originalMeshAttribute->getBufferView()->getBufferDataByApplyingOffset();;
bufferInfos->originalMeshAttributeByteStride = originalMeshAttribute->getByteStride();
bufferInfos->elementByteLength = remappedMeshAttribute->elementByteLength();
}
return allBufferInfos;
}
bool __RemapPrimitiveVertices(shared_ptr<GLTF::GLTFPrimitive> primitive,
std::vector< shared_ptr<GLTF::GLTFAccessor> > allIndices,
MeshAttributeVector allOriginalMeshAttributes,
MeshAttributeVector allRemappedMeshAttributes,
unsigned int* indicesInRemapping,
shared_ptr<GLTF::GLTFPrimitiveRemapInfos> primitiveRemapInfos,
unsigned int* remapTableForPositions /* we fill/keep this to be able to remap skin weight/bone indices later on*/)
{
size_t indicesSize = allIndices.size();
if (allOriginalMeshAttributes.size() < indicesSize) {
//TODO: assert & inconsistency check
}
unsigned int vertexAttributesCount = (unsigned int)indicesSize;
//get the primitive infos to know where we need to "go" for remap
unsigned int* indices = primitiveRemapInfos->generatedIndices();
MeshAttributesBufferInfos *allBufferInfos = createMeshAttributesBuffersInfos(allOriginalMeshAttributes , allRemappedMeshAttributes, indicesInRemapping, vertexAttributesCount);
unsigned int* uniqueIndicesBuffer = (unsigned int*)primitive->getIndices()->getBufferView()->getBufferDataByApplyingOffset();
unsigned int *originalCountAndIndexes = primitiveRemapInfos->originalCountAndIndexes();
unsigned int count = primitiveRemapInfos->generatedIndicesCount();
for (unsigned int k = 0 ; k < count ; k++) {
unsigned int idx = indices[k];
unsigned int* remappedIndex = &originalCountAndIndexes[idx * (allOriginalMeshAttributes.size() + 1)];
for (size_t meshAttributeIndex = 0 ; meshAttributeIndex < vertexAttributesCount ; meshAttributeIndex++) {
unsigned int indiceInRemap = indicesInRemapping[meshAttributeIndex];
unsigned int rindex = remappedIndex[1 /* skip count */ + indiceInRemap];
if (meshAttributeIndex == 0) {
//HACK: we know that first vertex attribute to be processed is of semantic POSITION
remapTableForPositions[uniqueIndicesBuffer[idx]] = rindex;
}
MeshAttributesBufferInfos *bufferInfos = &allBufferInfos[meshAttributeIndex];
void *ptrSrc = (unsigned char*)bufferInfos->originalBufferData + (rindex * bufferInfos->originalMeshAttributeByteStride);
//FIXME: optimize / secure this a bit, too many indirections without testing for invalid pointers
/* copy the vertex attributes at the right offset and right indice (using the generated uniqueIndexes table */
void *ptrDst = bufferInfos->remappedBufferData + (uniqueIndicesBuffer[idx] * bufferInfos->remappedMeshAttributeByteStride);
memcpy(ptrDst, ptrSrc , bufferInfos->elementByteLength);
}
}
if (allBufferInfos)
free(allBufferInfos);
return true;
}
shared_ptr<GLTF::GLTFPrimitiveRemapInfos> __BuildPrimitiveUniqueIndexes(shared_ptr<GLTF::GLTFPrimitive> primitive,
std::vector< shared_ptr<GLTF::GLTFAccessor> > allIndices,
RemappedMeshIndexesHashmap& remappedMeshIndexesMap,
unsigned int* indicesInRemapping,
size_t startIndex,
unsigned int meshAttributesCount,
size_t &endIndex,
shared_ptr<GLTFProfile> profile)
{
unsigned int generatedIndicesCount = 0;
size_t allIndicesSize = allIndices.size();
size_t vertexIndicesCount = allIndices[0]->getCount();
size_t sizeOfRemappedIndex = (meshAttributesCount + 1) * sizeof(unsigned int);
unsigned int* originalCountAndIndexes = (unsigned int*)calloc( vertexIndicesCount, sizeOfRemappedIndex);
//this is useful for debugging.
unsigned int *uniqueIndexes = (unsigned int*)calloc( vertexIndicesCount , sizeof(unsigned int));
unsigned int *generatedIndices = (unsigned int*) calloc (vertexIndicesCount , sizeof(unsigned int)); //owned by PrimitiveRemapInfos
unsigned int currentIndex = (unsigned int)startIndex;
unsigned int** allIndicesPtr = (unsigned int**) malloc(sizeof(unsigned int*) * allIndicesSize);
for (unsigned int i = 0 ; i < allIndicesSize ; i++) {
allIndicesPtr[i] = (unsigned int*)allIndices[i]->getBufferView()->getBufferDataByApplyingOffset();
}
for (size_t k = 0 ; k < vertexIndicesCount ; k++) {
unsigned int* remappedIndex = &originalCountAndIndexes[k * (meshAttributesCount + 1)];
remappedIndex[0] = meshAttributesCount;
for (unsigned int i = 0 ; i < allIndicesSize ; i++) {
unsigned int idx = indicesInRemapping[i];
unsigned int* indicesPtr = allIndicesPtr[i];
remappedIndex[1 + idx] = indicesPtr[k];
}
unsigned int index;
if (remappedMeshIndexesMap.count(remappedIndex) == 0) {
index = currentIndex++;
generatedIndices[generatedIndicesCount++] = (unsigned int)k;
remappedMeshIndexesMap[remappedIndex] = index;
} else {
index = remappedMeshIndexesMap[remappedIndex];
}
uniqueIndexes[k] = index;
}
endIndex = currentIndex;
shared_ptr <GLTF::GLTFPrimitiveRemapInfos> primitiveRemapInfos(new GLTF::GLTFPrimitiveRemapInfos(generatedIndices, generatedIndicesCount, originalCountAndIndexes));
shared_ptr <GLTF::GLTFBufferView> indicesBufferView = createBufferViewWithAllocatedBuffer(uniqueIndexes, 0, vertexIndicesCount * sizeof(unsigned int), true);
shared_ptr <GLTF::GLTFAccessor> indices = shared_ptr <GLTF::GLTFAccessor> (new GLTFAccessor(profile, "UNSIGNED_SHORT", "SCALAR"));
indices->setBufferView(indicesBufferView);
indices->setCount(vertexIndicesCount);
primitive->setIndices(indices);
free(allIndicesPtr);
return primitiveRemapInfos;
}
#define DUMP_UNIFIED_INDEXES_INFO 0
shared_ptr <GLTFMesh> createUnifiedIndexesMeshFromMesh( GLTFMesh *sourceMesh,
std::vector< shared_ptr<IndicesVector> > &vectorOfIndicesVector,
shared_ptr<GLTFProfile> profile)
{
MeshAttributeVector originalMeshAttributes;
MeshAttributeVector remappedMeshAttributes;
shared_ptr <GLTFMesh> targetMesh(new GLTFMesh(*sourceMesh));
GLTF::JSONValueVector sourcePrimitives = sourceMesh->getPrimitives()->values();
GLTF::JSONValueVector targetPrimitives = targetMesh->getPrimitives()->values();
#if DUMP_UNIFIED_INDEXES_INFO
{
shared_ptr<GLTFAccessor> vertexSource = sourceMesh->getMeshAttribute(GLTF::POSITION, 0);
printf("vertex source cout :%d\n",(int)vertexSource->getCount());
}
#endif
size_t startIndex = 0;
size_t endIndex = 0;
size_t primitiveCount = sourcePrimitives.size();
unsigned int maxVertexAttributes = 0;
if (primitiveCount == 0) {
// FIXME: report error
return nullptr;
}
//in originalMeshAttributes we'll get the flattened list of all the meshAttributes as a vector.
//fill semanticAndSetToIndex with key: (semantic, indexSet) value: index in originalMeshAttributes vector.
vector <GLTF::Semantic> allSemantics = sourceMesh->allSemantics();
std::map<string, unsigned int> semanticAndSetToIndex;
for (unsigned int i = 0 ; i < allSemantics.size() ; i++) {
GLTF::Semantic semantic = allSemantics[i];
size_t attributesCount = sourceMesh->getMeshAttributesCountForSemantic(semantic);
for (size_t j = 0 ; j < attributesCount ; j ++) {
shared_ptr <GLTF::GLTFAccessor> selectedMeshAttribute = sourceMesh->getMeshAttribute(semantic, j);
unsigned int indexSet = j;
std::string semanticIndexSetKey = keyWithSemanticAndSet(semantic, indexSet);
unsigned int size = (unsigned int)originalMeshAttributes.size();
semanticAndSetToIndex[semanticIndexSetKey] = size;
originalMeshAttributes.push_back(selectedMeshAttribute);
}
}
maxVertexAttributes = (unsigned int)originalMeshAttributes.size();
vector <shared_ptr<GLTF::GLTFPrimitiveRemapInfos> > allPrimitiveRemapInfos;
//build a array that maps the meshAttributes that the indices points to with the index of the indice.
GLTF::RemappedMeshIndexesHashmap remappedMeshIndexesMap;
for (unsigned int i = 0 ; i < primitiveCount ; i++) {
shared_ptr<IndicesVector> allIndicesSharedPtr = vectorOfIndicesVector[i];
IndicesVector *allIndices = allIndicesSharedPtr.get();
unsigned int* indicesInRemapping = (unsigned int*)malloc(sizeof(unsigned int) * allIndices->size());
shared_ptr<GLTFPrimitive> sourcePrimitive = static_pointer_cast<GLTFPrimitive>(sourcePrimitives[i]);
VertexAttributeVector vertexAttributes = sourcePrimitive->getVertexAttributes();
for (unsigned int k = 0 ; k < allIndices->size() ; k++) {
GLTF::Semantic semantic = vertexAttributes[k]->getSemantic();
unsigned int indexSet = (unsigned int)vertexAttributes[k]->getIndexOfSet();
std::string semanticIndexSetKey = keyWithSemanticAndSet(semantic, indexSet);
unsigned int idx = semanticAndSetToIndex[semanticIndexSetKey];
indicesInRemapping[k] = idx;
}
shared_ptr<GLTFPrimitive> targetPrimitive = static_pointer_cast<GLTFPrimitive>(targetPrimitives[i]);
shared_ptr<GLTF::GLTFPrimitiveRemapInfos> primitiveRemapInfos = __BuildPrimitiveUniqueIndexes(targetPrimitive, *allIndices, remappedMeshIndexesMap, indicesInRemapping, startIndex, maxVertexAttributes, endIndex, profile);
free(indicesInRemapping);
if (primitiveRemapInfos.get()) {
startIndex = endIndex;
allPrimitiveRemapInfos.push_back(primitiveRemapInfos);
} else {
// FIXME: report error
return nullptr;
}
}
// now we got not only the uniqueIndexes but also the number of different indexes, i.e the number of vertex attributes count
// we can allocate the buffer to hold vertex attributes
unsigned int vertexCount = (unsigned int)endIndex;
//just allocate it now, will be filled later
unsigned int* remapTableForPositions = (unsigned int*)malloc(sizeof(unsigned int) * vertexCount);
targetMesh->setRemapTableForPositions(remapTableForPositions);
for (unsigned int i = 0 ; i < allSemantics.size() ; i++) {
GLTF::Semantic semantic = allSemantics[i];
size_t attributesCount = sourceMesh->getMeshAttributesCountForSemantic(semantic);
for (size_t j = 0 ; j < attributesCount ; j ++) {
shared_ptr <GLTF::GLTFAccessor> selectedMeshAttribute = sourceMesh->getMeshAttribute(semantic, j);
size_t sourceSize = vertexCount * selectedMeshAttribute->elementByteLength();
void* sourceData = malloc(sourceSize);
shared_ptr <GLTFBufferView> referenceBufferView = selectedMeshAttribute->getBufferView();
shared_ptr <GLTFBufferView> remappedBufferView = createBufferViewWithAllocatedBuffer(referenceBufferView->getID(), sourceData, 0, sourceSize, true);
shared_ptr <GLTFAccessor> remappedMeshAttribute(new GLTFAccessor(selectedMeshAttribute.get()));
remappedMeshAttribute->setBufferView(remappedBufferView);
remappedMeshAttribute->setCount(vertexCount);
targetMesh->setMeshAttribute(semantic, j, remappedMeshAttribute);
remappedMeshAttributes.push_back(remappedMeshAttribute);
}
}
/*
if (_allOriginalMeshAttributes.size() != allIndices.size()) {
// FIXME: report error
return false;
}
*/
for (unsigned int i = 0 ; i < primitiveCount ; i++) {
shared_ptr<IndicesVector> allIndicesSharedPtr = vectorOfIndicesVector[i];
IndicesVector *allIndices = allIndicesSharedPtr.get();
unsigned int* indicesInRemapping = (unsigned int*)calloc(sizeof(unsigned int) * (*allIndices).size(), 1);
shared_ptr<GLTFPrimitive> sourcePrimitive = static_pointer_cast<GLTFPrimitive>(sourcePrimitives[i]);
VertexAttributeVector vertexAttributes = sourcePrimitive->getVertexAttributes();
for (unsigned int k = 0 ; k < (*allIndices).size() ; k++) {
GLTF::Semantic semantic = vertexAttributes[k]->getSemantic();
unsigned int indexSet = (unsigned int)vertexAttributes[k]->getIndexOfSet();
std::string semanticIndexSetKey = keyWithSemanticAndSet(semantic, indexSet);
unsigned int idx = semanticAndSetToIndex[semanticIndexSetKey];
indicesInRemapping[k] = idx;
}
shared_ptr<GLTFPrimitive> targetPrimitive = static_pointer_cast<GLTFPrimitive>(targetPrimitives[i]);
bool status = __RemapPrimitiveVertices(targetPrimitive,
(*allIndices),
originalMeshAttributes ,
remappedMeshAttributes,
indicesInRemapping,
allPrimitiveRemapInfos[i],
remapTableForPositions);
free(indicesInRemapping);
if (!status) {
// FIXME: report error
return nullptr;
}
}
#if DUMP_UNIFIED_INDEXES_INFO
{
shared_ptr<GLTFAccessor> vertexSource = targetMesh->getMeshAttribute(GLTF::POSITION, 0);
printf("vertex dest count :%d\n",(int)vertexSource->getCount());
}
#endif
return targetMesh;
}
//------ Mesh splitting ----
class SubMeshContext {
public:
shared_ptr <GLTFMesh> targetMesh;
//For each sub mesh being built, maintain 2 maps,
//with key:indice value: remapped indice
IndicesMap indexToRemappedIndex;
} ;
SubMeshContext* __CreateSubMeshContext(const std::string& id)
{
SubMeshContext *subMesh = new SubMeshContext();
shared_ptr <GLTFMesh> targetMesh = shared_ptr <GLTFMesh> (new GLTFMesh());
targetMesh->setID(id);
subMesh->targetMesh = targetMesh;
return subMesh;
}
void __PushAndRemapIndicesInSubMesh(SubMeshContext *subMesh, unsigned int* indices, int count)
{
for (int i = 0 ; i < count ; i++) {
unsigned int index = indices[i];
bool shouldRemap = subMesh->indexToRemappedIndex.count(index) == 0;
if (shouldRemap) {
unsigned int remappedIndex = (unsigned int)subMesh->indexToRemappedIndex.size();
subMesh->indexToRemappedIndex[index] = remappedIndex;
}
}
}
static void __RemapMeshAttribute(void *value,
const std::string &componentType,
const std::string &type,
size_t componentsPerElement,
size_t index,
size_t vertexAttributeByteSize,
void *context) {
void **remapContext = (void**)context;
unsigned char *targetBufferPtr = (unsigned char*)remapContext[0];
SubMeshContext *subMesh = (SubMeshContext*)remapContext[1];
if (subMesh->indexToRemappedIndex.count((unsigned int)index) > 0) {
size_t remappedIndex = subMesh->indexToRemappedIndex[(unsigned int)index];
memcpy(&targetBufferPtr[vertexAttributeByteSize * remappedIndex], value, vertexAttributeByteSize);
}
}
//FIXME: add suport for interleaved arrays
static void __RemapSubMesh(SubMeshContext *subMesh, GLTFMesh *sourceMesh)
{
//remap the subMesh using the original mesh
//we walk through all meshAttributes
vector <GLTF::Semantic> allSemantics = sourceMesh->allSemantics();
std::map<string, unsigned int> semanticAndSetToIndex;
for (unsigned int i = 0 ; i < allSemantics.size() ; i++) {
GLTF::Semantic semantic = allSemantics[i];
size_t attributesCount = sourceMesh->getMeshAttributesCountForSemantic(semantic);
for (size_t j = 0 ; j < attributesCount ; j ++) {
shared_ptr <GLTFAccessor> selectedMeshAttribute = sourceMesh->getMeshAttribute(semantic, j);
shared_ptr <GLTFBufferView> referenceBufferView = selectedMeshAttribute->getBufferView();
unsigned int vertexAttributeCount = (unsigned int)subMesh->indexToRemappedIndex.size();
//FIXME: this won't work with interleaved
unsigned int *targetBufferPtr = (unsigned int*)malloc(selectedMeshAttribute->elementByteLength() * vertexAttributeCount);
void *context[2];
context[0] = targetBufferPtr;
context[1] = subMesh;
selectedMeshAttribute->applyOnAccessor(__RemapMeshAttribute, (void*)context);
shared_ptr <GLTFBufferView> remappedBufferView =
createBufferViewWithAllocatedBuffer(referenceBufferView->getID(), targetBufferPtr, 0, selectedMeshAttribute->elementByteLength() * vertexAttributeCount, true);
shared_ptr <GLTFAccessor> remappedMeshAttribute(new GLTF::GLTFAccessor(selectedMeshAttribute.get()));
remappedMeshAttribute->setBufferView(remappedBufferView);
remappedMeshAttribute->setCount(vertexAttributeCount);
subMesh->targetMesh->setMeshAttribute(semantic, j, remappedMeshAttribute);
}
}
}
shared_ptr <GLTFMesh> createMeshWithMaximumIndicesCountFromMeshIfNeeded(GLTFMesh *sourceMesh, size_t maximumIndicesCount, shared_ptr<GLTFProfile> profile)
{
shared_ptr <GLTFMesh> destinationMesh = nullptr;
bool splitNeeded = sourceMesh->getMeshAttribute(GLTF::POSITION, 0)->getCount() >= maximumIndicesCount;
if (!splitNeeded)
return nullptr;
GLTF::JSONValueVector primitives = sourceMesh->getPrimitives()->values();
SubMeshContext *subMesh = nullptr;
bool stillHavePrimitivesElementsToBeProcessed = false;
bool primitiveCompleted = false;
int *allNextPrimitiveIndices = (int*)calloc(primitives.size(), sizeof(int));
size_t meshIndex = 0;
shared_ptr <GLTFMesh> targetMesh = nullptr;
for (size_t i = 0 ; i < primitives.size() ; i++) {
if (allNextPrimitiveIndices[i] == -1)
continue;
if (subMesh == nullptr) {
if (targetMesh == nullptr) {
subMesh = __CreateSubMeshContext(sourceMesh->getID());
targetMesh = subMesh->targetMesh;
}
else {
std::string id = sourceMesh->getID() + "split_" + GLTFUtils::toString(targetMesh->subMeshes()->values().size());
subMesh = __CreateSubMeshContext(id);
targetMesh->subMeshes()->appendValue(subMesh->targetMesh);
}
std::string meshName = sourceMesh->getName();
if (meshIndex) {
meshName += GLTFUtils::toString(meshIndex);
}
subMesh->targetMesh->setName(meshName);
stillHavePrimitivesElementsToBeProcessed = false;
meshIndex++;
}
shared_ptr <GLTFPrimitive> targetPrimitive;
//when we are done with a primitive we mark its nextIndice with a -1
shared_ptr<GLTFPrimitive> primitive = static_pointer_cast<GLTFPrimitive> (primitives[i]);
targetPrimitive = shared_ptr <GLTFPrimitive> (new GLTFPrimitive((*primitive)));
unsigned int nextPrimitiveIndex = (unsigned int)allNextPrimitiveIndices[i];
shared_ptr<GLTFAccessor> indices = primitive->getIndices();
unsigned int* indicesPtr = (unsigned int*)indices->getBufferView()->getBufferDataByApplyingOffset();
unsigned int* targetIndicesPtr = (unsigned int*)malloc(indices->getBufferView()->getBuffer()->getByteLength());
//sub meshes are built this way [ and it is not optimal yet (*)]:
//each primitive is iterated through all its triangles/lines/...
//When the indices count in indexToRemappedIndex is >= maxiumIndicesCount then we try the next primitive.
/*
we could continue walking through a primitive even if the of maximum indices has been reached, because, for instance the next say, triangles could be within the already remapped indices. That said, not doing so should produce meshes that have more chances to have adjacent triangles. Need more experimentation about this. Having 2 modes would ideal.
*/
//Different iterators type will be needed for these types
/*
type = "TRIANGLES";
type = "LINES";
type = "LINE_STRIP";
type = "TRIANGLES";
type = "TRIANGLE_FANS";
type = "TRIANGLE_STRIPS";
type = "POINTS";
*/
size_t j = 0;
unsigned int primitiveCount = 0;
unsigned int targetIndicesCount = 0;
if (primitive->getPrimitive() == profile->getGLenumForString("TRIANGLES")) {
unsigned int indicesPerElementCount = 3;
primitiveCount = (unsigned int)indices->getCount() / indicesPerElementCount;
for (j = nextPrimitiveIndex ; j < primitiveCount ; j++) {
unsigned int *indicesPtrAtPrimitiveIndex = indicesPtr + (j * indicesPerElementCount);
//will we still have room to store coming indices from this mesh ?
//note: this is tied to the policy described above in (*)
size_t currentSize = subMesh->indexToRemappedIndex.size();
if ((currentSize + indicesPerElementCount) < maximumIndicesCount) {
__PushAndRemapIndicesInSubMesh(subMesh, indicesPtrAtPrimitiveIndex, indicesPerElementCount);
//build the indices for the primitive to be added to the subMesh
targetIndicesPtr[targetIndicesCount] = subMesh->indexToRemappedIndex[indicesPtrAtPrimitiveIndex[0]];
targetIndicesPtr[targetIndicesCount + 1] = subMesh->indexToRemappedIndex[indicesPtrAtPrimitiveIndex[1]];
targetIndicesPtr[targetIndicesCount + 2] = subMesh->indexToRemappedIndex[indicesPtrAtPrimitiveIndex[2]];
targetIndicesCount += indicesPerElementCount;
nextPrimitiveIndex++;
} else {
allNextPrimitiveIndices[i] = -1;
primitiveCompleted = true;
break;
}
}
}
else if (primitive->getPrimitive() == profile->getGLenumForString("LINES")) {
unsigned int indicesPerElementCount = 2;
primitiveCount = (unsigned int)indices->getCount() / indicesPerElementCount;
for (j = nextPrimitiveIndex; j < primitiveCount; j++) {
unsigned int *indicesPtrAtPrimitiveIndex = indicesPtr + (j * indicesPerElementCount);
//will we still have room to store coming indices from this mesh ?
//note: this is tied to the policy described above in (*)
size_t currentSize = subMesh->indexToRemappedIndex.size();
if ((currentSize + indicesPerElementCount) < maximumIndicesCount) {
__PushAndRemapIndicesInSubMesh(subMesh, indicesPtrAtPrimitiveIndex, indicesPerElementCount);
//build the indices for the primitive to be added to the subMesh
targetIndicesPtr[targetIndicesCount] = subMesh->indexToRemappedIndex[indicesPtrAtPrimitiveIndex[0]];
targetIndicesPtr[targetIndicesCount + 1] = subMesh->indexToRemappedIndex[indicesPtrAtPrimitiveIndex[1]];
targetIndicesCount += indicesPerElementCount;
nextPrimitiveIndex++;
}
else {
allNextPrimitiveIndices[i] = -1;
primitiveCompleted = true;
break;
}
}
}
allNextPrimitiveIndices[i] = nextPrimitiveIndex;
if (targetIndicesCount > 0) {
shared_ptr <GLTFBufferView> targetBufferView = createBufferViewWithAllocatedBuffer(targetIndicesPtr, 0,targetIndicesCount * sizeof(unsigned int), true);
shared_ptr <GLTFAccessor> indices(new GLTFAccessor(profile, "UNSIGNED_SHORT", "SCALAR"));
indices->setBufferView(targetBufferView);
indices->setCount(targetIndicesCount);
targetPrimitive->setIndices(indices);
subMesh->targetMesh->appendPrimitive(targetPrimitive);
} else {
if (targetIndicesPtr)
free(targetIndicesPtr);
}
if (j < primitiveCount)
stillHavePrimitivesElementsToBeProcessed = true;
//did we process the last primitive ?
if (primitiveCompleted || (((i + 1) == primitives.size()))) {
__RemapSubMesh(subMesh, sourceMesh);
if (stillHavePrimitivesElementsToBeProcessed) {
//loop again and build new mesh
i = -1;
delete subMesh;
subMesh = 0;
}
}
}
free(allNextPrimitiveIndices);
return targetMesh;
}
//Not required anymore since Open3DGC supports now sharing same vertex buffer and WebGL is disabled
//DO NOT REMOVE - might be useful again someday
/*
bool createMeshesFromMeshPrimitives(GLTFMesh *sourceMesh, MeshVector &meshes, shared_ptr<GLTFProfile> profile) {
GLTF::JSONValueVector primitives = sourceMesh->getPrimitives()->values();
if (primitives.size() == 1) {
return false;
}
size_t primitiveCount = primitives.size();
for (size_t i = 0 ; i < primitiveCount ; i++) {
IndicesMap remappedIndices;
shared_ptr <GLTFMesh> targetMesh = shared_ptr <GLTFMesh> (new GLTFMesh());
shared_ptr <GLTFPrimitive> refPrimitive = static_pointer_cast<GLTFPrimitive>(primitives[i]);
shared_ptr <GLTFPrimitive> targetPrimitive = shared_ptr <GLTFPrimitive> (new GLTFPrimitive((*refPrimitive)));
targetMesh->appendPrimitive(targetPrimitive);
unsigned int* originalIndices = (unsigned int*)refPrimitive->getIndices()->getBufferView()->getBufferDataByApplyingOffset();
size_t indicesCount = refPrimitive->getIndices()->getCount();
unsigned int* targetIndices = (unsigned int*)malloc(indicesCount * sizeof(unsigned int));
//perform remapping of indices
for (size_t j = 0 ; j < indicesCount ; j++) {
if (remappedIndices.count(originalIndices[j]) == 0) {
//this index is not yet added
targetIndices[j] = remappedIndices.size();
remappedIndices[originalIndices[j]] = targetIndices[j];
} else {
targetIndices[j] = remappedIndices[originalIndices[j]];
}
}
shared_ptr <GLTFBufferView> targetIndicesView = createBufferViewWithAllocatedBuffer(targetIndices, 0,indicesCount * sizeof(unsigned int), true);
shared_ptr <GLTFAccessor> indices(new GLTFAccessor(profile, profile->getGLenumForString("UNSIGNED_SHORT")));
indices->setBufferView(targetIndicesView);
indices->setCount(indicesCount);
targetPrimitive->setIndices(indices);
// Now for each mesh attribute in the mesh, create another one just for the primitive
shared_ptr <GLTFPrimitive> primitive = static_pointer_cast<GLTFPrimitive>(primitives[i]);
VertexAttributeVector vertexAttributes = primitive->getVertexAttributes();
for (size_t j = 0 ; j < vertexAttributes.size() ; j++) {
Semantic semantic = vertexAttributes[j]->getSemantic();
size_t indexOfSet = vertexAttributes[j]->getIndexOfSet();
shared_ptr <GLTFAccessor> meshAttribute = sourceMesh->getMeshAttribute(semantic, indexOfSet);
size_t targetVertexCount = remappedIndices.size();
unsigned char *sourcePtr = (unsigned char *)meshAttribute->getBufferView()->getBufferDataByApplyingOffset();
shared_ptr<GLTFAccessor> targetAttribute = shared_ptr<GLTFAccessor> (new GLTFAccessor(meshAttribute.get()));
size_t targetAttributeSize = targetVertexCount * meshAttribute->elementByteLength();
unsigned char *targetAttributePtr = (unsigned char*)malloc(targetAttributeSize);
shared_ptr <GLTFBufferView> targetAttributeBufferView = createBufferViewWithAllocatedBuffer(targetAttributePtr, 0, targetAttributeSize, true);
targetAttribute->setCount(targetVertexCount);
targetAttribute->setBufferView(targetAttributeBufferView);
size_t vertexAttributeByteSize = meshAttribute->elementByteLength();
IndicesMap::const_iterator indicesIterator;
for (indicesIterator = remappedIndices.begin() ; indicesIterator != remappedIndices.end() ; indicesIterator++) {
//(*it).first; // the key value (of type Key)
//(*it).second; // the mapped value (of type T)
unsigned int originalIndex = (*indicesIterator).first;
unsigned int remappedIndex = (*indicesIterator).second;
memcpy(&targetAttributePtr[vertexAttributeByteSize * remappedIndex], sourcePtr + (vertexAttributeByteSize * originalIndex), vertexAttributeByteSize);
}
targetMesh->setMeshAttribute(semantic, indexOfSet, targetAttribute);
}
meshes->appendValue(targetMesh);
}
return true;
}
*/
}
|