1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
|
"""
Python reimplementation of the bundle adjustment for the incremental mapper of C++ with equivalent logic.
As a result, one can add customized residuals on top of the exposed ceres problem from conventional bundle adjustment.
pyceres is needed as a dependency for this file.
"""
import pyceres
import pycolmap
from pycolmap import logging
import copy
class PyBundleAdjuster(object):
# Python implementation of COLMAP bundle adjuster with pyceres
def __init__(
self,
options: pycolmap.BundleAdjustmentOptions,
config: pycolmap.BundleAdjustmentConfig,
):
self.options = options
self.config = config
self.problem = pyceres.Problem()
self.summary = pyceres.SolverSummary()
self.camera_ids = set()
self.point3D_num_observations = dict()
def solve(self, reconstruction: pycolmap.Reconstruction):
loss = self.options.create_loss_function()
self.set_up_problem(reconstruction, loss)
if self.problem.num_residuals() == 0:
return False
solver_options = self.set_up_solver_options(
self.problem, self.options.solver_options
)
pyceres.solve(solver_options, self.problem, self.summary)
return True
def set_up_problem(
self,
reconstruction: pycolmap.Reconstruction,
loss: pyceres.LossFunction,
):
assert reconstruction is not None
self.problem = pyceres.Problem()
for image_id in self.config.image_ids:
self.add_image_to_problem(image_id, reconstruction, loss)
for point3D_id in self.config.variable_point3D_ids:
self.add_point_to_problem(point3D_id, reconstruction, loss)
for point3D_id in self.config.constant_point3D_ids:
self.add_point_to_problem(point3D_id, reconstruction, loss)
self.parameterize_cameras(reconstruction)
self.parameterize_points(reconstruction)
return self.problem
def set_up_solver_options(
self, problem: pyceres.Problem, solver_options: pyceres.SolverOptions
):
bundle_adjuster = pycolmap.BundleAdjuster(self.options, self.config)
return bundle_adjuster.set_up_solver_options(problem, solver_options)
def add_image_to_problem(
self,
image_id: int,
reconstruction: pycolmap.Reconstruction,
loss: pyceres.LossFunction,
):
image = reconstruction.images[image_id]
pose = image.cam_from_world
camera = reconstruction.cameras[image.camera_id]
constant_cam_pose = (
not self.options.refine_extrinsics
) or self.config.has_constant_cam_pose(image.image_id)
num_observations = 0
for point2D in image.points2D:
if not point2D.has_point3D():
continue
num_observations += 1
if point2D.point3D_id not in self.point3D_num_observations:
self.point3D_num_observations[point2D.point3D_id] = 0
self.point3D_num_observations[point2D.point3D_id] += 1
point3D = reconstruction.points3D[point2D.point3D_id]
assert point3D.track.length() > 1
if constant_cam_pose:
cost = pycolmap.cost_functions.ReprojErrorCost(
camera.model, pose, point2D.xy
)
self.problem.add_residual_block(
cost, loss, [point3D.xyz, camera.params]
)
else:
cost = pycolmap.cost_functions.ReprojErrorCost(
camera.model, point2D.xy
)
self.problem.add_residual_block(
cost,
loss,
[
pose.rotation.quat,
pose.translation,
point3D.xyz,
camera.params,
],
)
if num_observations > 0:
self.camera_ids.add(image.camera_id)
# Set pose parameterization
if not constant_cam_pose:
self.problem.set_manifold(
pose.rotation.quat, pyceres.QuaternionManifold()
)
if self.config.has_constant_cam_positions(image_id):
constant_position_idxs = self.config.constant_cam_positions(
image_id
)
self.problem.set_manifold(
pose.translation,
pyceres.SubsetManifold(3, constant_position_idxs),
)
def add_point_to_problem(
self,
point3D_id: int,
reconstruction: pycolmap.Reconstruction,
loss: pyceres.LossFunction,
):
point3D = reconstruction.points3D[point3D_id]
if point3D_id in self.point3D_num_observations:
if (
self.point3D_num_observations[point3D_id]
== point3D.track.length()
):
return
else:
self.point3D_num_observations[point3D_id] = 0
for track_el in point3D.track.elements:
if self.config.has_image(track_el.image_id):
continue
self.point3D_num_observations[point3D_id] += 1
image = reconstruction.images[track_el.image_id]
camera = reconstruction.cameras[image.camera_id]
point2D = image.point2D(track_el.point2D_idx)
if image.camera_id not in self.camera_ids:
self.camera_ids.add(image.camera_id)
self.config.set_constant_cam_intrinsics(image.camera_id)
cost = pycolmap.cost_functions.ReprojErrorCost(
camera.model, image.cam_from_world, point2D.xy
)
self.problem.add_residual_block(
cost, loss, [point3D.xyz, camera.params]
)
def parameterize_cameras(self, reconstruction: pycolmap.Reconstruction):
constant_camera = (
(not self.options.refine_focal_length)
and (not self.options.refine_principal_point)
and (not options.refine_extra_params)
)
for camera_id in self.camera_ids:
camera = reconstruction.cameras[camera_id]
if constant_camera or self.config.has_constant_cam_intrinsics(
camera_id
):
self.problem.set_parameter_block_constant(camera.params)
continue
const_camera_params = []
if not self.options.refine_focal_length:
const_camera_params.extend(camera.focal_length_idxs())
if not self.options.refine_principal_point:
const_camera_params.extend(camera.principal_point_idxs())
if not self.options.refine_extra_params:
const_camera_params.extend(camera.extra_point_idxs())
if len(const_camera_params) > 0:
self.problem.set_manifold(
camera.params,
pyceres.SubsetManifold(
len(camera.params), const_camera_params
),
)
def parameterize_points(self, reconstruction: pycolmap.Reconstruction):
for (
point3D_id,
num_observations,
) in self.point3D_num_observations.items():
point3D = reconstruction.points3D[point3D_id]
if point3D.track.length() > num_observations:
self.problem.set_parameter_block_constant(point3D.xyz)
for point3D_id in self.config.constant_point3D_ids:
point3D = reconstruction.points3D[point3D_id]
self.problem.set_parameter_block_constant(point3D.xyz)
def solve_bundle_adjustment(reconstruction, ba_options, ba_config):
bundle_adjuster = pycolmap.BundleAdjuster(ba_options, ba_config)
# alternative equivalent python-based bundle adjustment (slower):
# bundle_adjuster = PyBundleAdjuster(ba_options, ba_config)
bundle_adjuster.set_up_problem(
reconstruction, ba_options.create_loss_function()
)
solver_options = bundle_adjuster.set_up_solver_options(
bundle_adjuster.problem, ba_options.solver_options
)
summary = pyceres.SolverSummary()
pyceres.solve(solver_options, bundle_adjuster.problem, summary)
return summary
def adjust_global_bundle(mapper, mapper_options, ba_options):
"""Equivalent to mapper.adjust_global_bundle(...)"""
reconstruction = mapper.reconstruction
assert reconstruction is not None
reg_image_ids = reconstruction.reg_image_ids()
if len(reg_image_ids) < 2:
logging.fatal(
"At least two images must be registered for global bundle-adjustment"
)
ba_options_tmp = copy.deepcopy(ba_options)
# Use stricter convergence criteria for first registered images
if len(reg_image_ids) < 10: # kMinNumRegImagesForFastBA = 10
ba_options_tmp.solver_options.function_tolerance /= 10
ba_options_tmp.solver_options.gradient_tolerance /= 10
ba_options_tmp.solver_options.parameter_tolerance /= 10
ba_options_tmp.solver_options.max_num_iterations *= 2
ba_options_tmp.solver_options.max_linear_solver_iterations = 200
# Avoid degeneracies in bundle adjustment
mapper.observation_manager.filter_observations_with_negative_depth()
# Configure bundle adjustment
ba_config = pycolmap.BundleAdjustmentConfig()
for image_id in reg_image_ids:
ba_config.add_image(image_id)
# Fix the existing images, if option specified
if mapper_options.fix_existing_images:
for image_id in reg_image_ids:
if image_id in mapper.existing_image_ids:
ba_config.set_constant_cam_pose(image_id)
# Fix 7-DOFs of the bundle adjustment problem
ba_config.set_constant_cam_pose(reg_image_ids[0])
if (not mapper_options.fix_existing_images) or (
reg_image_ids[1] not in mapper.existing_image_ids
):
ba_config.set_constant_cam_positions(reg_image_ids[1], [0])
# Run bundle adjustment
summary = solve_bundle_adjustment(reconstruction, ba_options_tmp, ba_config)
logging.info("Global Bundle Adjustment")
logging.info(summary.BriefReport())
def iterative_global_refinement(
mapper,
max_num_refinements,
max_refinement_change,
mapper_options,
ba_options,
tri_options,
normalize_reconstruction=True,
):
"""Equivalent to mapper.iterative_global_refinement(...)"""
reconstruction = mapper.reconstruction
mapper.complete_and_merge_tracks(tri_options)
num_retriangulated_observations = mapper.retriangulate(tri_options)
logging.verbose(
1, f"=> Retriangulated observations: {num_retriangulated_observations}"
)
for i in range(max_num_refinements):
num_observations = reconstruction.compute_num_observations()
# mapper.adjust_global_bundle(mapper_options, ba_options)
adjust_global_bundle(mapper, mapper_options, ba_options)
if normalize_reconstruction:
reconstruction.normalize()
num_changed_observations = mapper.complete_and_merge_tracks(tri_options)
num_changed_observations += mapper.filter_points(mapper_options)
changed = (
num_changed_observations / num_observations
if num_observations > 0
else 0
)
logging.verbose(1, f"=> Changed observations: {changed:.6f}")
if changed < max_refinement_change:
break
def adjust_local_bundle(
mapper, mapper_options, ba_options, tri_options, image_id, point3D_ids
):
"""Equivalent to mapper.adjust_local_bundle(...)"""
reconstruction = mapper.reconstruction
assert reconstruction is not None
report = pycolmap.LocalBundleAdjustmentReport()
# Find images that have most 3D points with given image in common
local_bundle = mapper.find_local_bundle(mapper_options, image_id)
# Do the bundle adjustment only if there is any connected images
if local_bundle:
ba_config = pycolmap.BundleAdjustmentConfig()
ba_config.add_image(image_id)
for local_image_id in local_bundle:
ba_config.add_image(local_image_id)
# Fix the existing images, if options specified
if mapper_options.fix_existing_images:
for local_image_id in local_bundle:
if local_image_id in mapper.existing_image_ids:
ba_config.set_constant_cam_pose(local_image_id)
# Determine which cameras to fix, when not all the registered images are within the current local bundle.
num_images_per_camera = {}
for image_id in ba_config.image_ids:
image = reconstruction.images[image_id]
if image.camera_id not in num_images_per_camera:
num_images_per_camera[image.camera_id] = 0
num_images_per_camera[image.camera_id] += 1
for camera_id, num_images_local in num_images_per_camera.items():
if num_images_local < mapper.num_reg_images_per_camera[camera_id]:
ba_config.set_constant_cam_intrinsics(camera_id)
# Fix 7 DOF to avoid scale/rotation/translation drift in bundle adjustment
if len(local_bundle) == 1:
ba_config.set_constant_cam_pose(local_bundle[0])
ba_config.set_constant_cam_positions(image_id, [0])
elif len(local_bundle) > 1:
image_id1, image_id2 = local_bundle[-1], local_bundle[-2]
ba_config.set_constant_cam_pose(image_id1)
if (not mapper_options.fix_existing_images) or (
image_id2 not in mapper.existing_image_ids
):
ba_config.set_constant_cam_positions(image_id2, [0])
# Make sure, we refine all new and short-track 3D points, no matter if
# they are fully contained in the local image set or not. Do not include
# long track 3D points as they are usually already very stable and adding
# to them to bundle adjustment and track merging/completion would slow
# down the local bundle adjustment significantly.
variable_point3D_ids = set()
for point3D_id in list(point3D_ids):
point3D = reconstruction.point3D(point3D_id)
kMaxTrackLength = 15
if (
point3D.error == -1.0
) or point3D.track.length() <= kMaxTrackLength:
ba_config.add_variable_point(point3D_id)
variable_point3D_ids.add(point3D_id)
# Adjust the local bundle
summary = solve_bundle_adjustment(
mapper.reconstruction, ba_options, ba_config
)
logging.info("Local Bundle Adjustment")
logging.info(summary.BriefReport())
report.num_adjusted_observations = int(summary.num_residuals / 2)
# Merge refined tracks with other existing points
report.num_merged_observations = mapper.triangulator.merge_tracks(
tri_options, variable_point3D_ids
)
# Complete tracks that may have failed to triangulate before refinement
# of camera pose and calibration in bundle adjustment. This may avoid that
# some points are filtered and it helps for subsequent image registrations
report.num_completed_observations = mapper.triangulator.complete_tracks(
tri_options, variable_point3D_ids
)
report.num_completed_observations += mapper.triangulator.complete_image(
tri_options, image_id
)
filter_image_ids = {image_id, *local_bundle}
report.num_filtered_observations = (
mapper.observation_manager.filter_points3D_in_images(
mapper_options.filter_max_reproj_error,
mapper_options.filter_min_tri_angle,
filter_image_ids,
)
)
report.num_filtered_observations += (
mapper.observation_manager.filter_points3D(
mapper_options.filter_max_reproj_error,
mapper_options.filter_min_tri_angle,
point3D_ids,
)
)
return report
def iterative_local_refinement(
mapper,
max_num_refinements,
max_refinement_change,
mapper_options,
ba_options,
tri_options,
image_id,
):
"""Equivalent to mapper.iterative_local_refinement(...)"""
ba_options_tmp = copy.deepcopy(ba_options)
for i in range(max_num_refinements):
# report = mapper.adjust_local_bundle(mapper_options, ba_options_tmp, tri_options, image_id, mapper.get_modified_points3D())
report = adjust_local_bundle(
mapper,
mapper_options,
ba_options_tmp,
tri_options,
image_id,
mapper.get_modified_points3D(),
)
logging.verbose(
1, f"=> Merged observations: {report.num_merged_observations}"
)
logging.verbose(
1, f"=> Completed observations: {report.num_completed_observations}"
)
logging.verbose(
1, f"=> Filtered observations: {report.num_filtered_observations}"
)
changed = 0
if report.num_adjusted_observations > 0:
changed = (
report.num_merged_observations
+ report.num_completed_observations
+ report.num_filtered_observations
) / report.num_adjusted_observations
logging.verbose(1, f"=> Changed observations: {changed:.6f}")
if changed < max_refinement_change:
break
# Only use robust cost function for first iteration
ba_options_tmp.loss_function_type = pycolmap.LossFunctionType.TRIVIAL
mapper.clear_modified_points3D()
|