1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
"""
Python reimplementation of the C++ incremental mapper with equivalent logic.
"""
import shutil
import time
import urllib.request
import zipfile
from pathlib import Path
import enlighten
import pycolmap
from pycolmap import logging
import custom_bundle_adjustment
def extract_colors(image_path, image_id, reconstruction):
if not reconstruction.extract_colors_for_image(image_id, image_path):
logging.warning(f"Could not read image {image_id} at path {image_path}")
def write_snapshot(reconstruction, snapshot_path):
logging.info("Creating snapshot")
timestamp = time.time() * 1000
path = snapshot_path / f"{timestamp:010d}"
path.mkdir(exist_ok=True, parents=True)
logging.verbose(1, f"=> Writing to {path}")
reconstruction.write(path)
def iterative_global_refinement(options, mapper_options, mapper):
logging.info("Retriangulation and Global bundle adjustment")
# The following is equivalent to mapper.iterative_global_refinement(...)
custom_bundle_adjustment.iterative_global_refinement(
mapper,
options.ba_global_max_refinements,
options.ba_global_max_refinement_change,
mapper_options,
options.get_global_bundle_adjustment(),
options.get_triangulation(),
)
mapper.filter_images(mapper_options)
def initialize_reconstruction(
controller, mapper, mapper_options, reconstruction
):
"""Equivalent to IncrementalMapperController.initialize_reconstruction(...)"""
options = controller.options
init_pair = (options.init_image_id1, options.init_image_id2)
# Try to find good initial pair
if not options.is_initial_pair_provided():
logging.info("Finding good initial image pair")
ret = mapper.find_initial_image_pair(mapper_options, *init_pair)
if ret is None:
logging.info("No good initial image pair found.")
return pycolmap.IncrementalMapperStatus.NO_INITIAL_PAIR
init_pair, two_view_geometry = ret
else:
if not all(reconstruction.exists_image(i) for i in init_pair):
logging.info(f"=> Initial image pair {init_pair} does not exist.")
return pycolmap.IncrementalMapperStatus.BAD_INITIAL_PAIR
two_view_geometry = mapper.estimate_initial_two_view_geometry(
mapper_options, *init_pair
)
if two_view_geometry is None:
logging.info("Provided pair is insuitable for initialization")
return pycolmap.IncrementalMapperStatus.BAD_INITIAL_PAIR
logging.info(f"Initializing with image pair {init_pair}")
mapper.register_initial_image_pair(
mapper_options, two_view_geometry, *init_pair
)
logging.info("Global bundle adjustment")
# The following is equivalent to: mapper.adjust_global_bundle(...)
custom_bundle_adjustment.adjust_global_bundle(
mapper, mapper_options, options.get_global_bundle_adjustment()
)
reconstruction.normalize()
mapper.filter_points(mapper_options)
mapper.filter_images(mapper_options)
# Initial image pair failed to register
if (
reconstruction.num_reg_images() == 0
or reconstruction.num_points3D() == 0
):
return pycolmap.IncrementalMapperStatus.BAD_INITIAL_PAIR
if options.extract_colors:
extract_colors(controller.image_path, init_pair[0], reconstruction)
return pycolmap.IncrementalMapperStatus.SUCCESS
def reconstruct_sub_model(controller, mapper, mapper_options, reconstruction):
"""Equivalent to IncrementalMapperController.reconstruct_sub_model(...)"""
# register initial pair
mapper.begin_reconstruction(reconstruction)
if reconstruction.num_reg_images() == 0:
init_status = initialize_reconstruction(
controller, mapper, mapper_options, reconstruction
)
if init_status != pycolmap.IncrementalMapperStatus.SUCCESS:
return init_status
controller.callback(
pycolmap.IncrementalMapperCallback.INITIAL_IMAGE_PAIR_REG_CALLBACK
)
# incremental mapping
options = controller.options
snapshot_prev_num_reg_images = reconstruction.num_reg_images()
ba_prev_num_reg_images = reconstruction.num_reg_images()
ba_prev_num_points = reconstruction.num_points3D()
reg_next_success, prev_reg_next_success = True, True
while True:
if not (reg_next_success or prev_reg_next_success):
break
prev_reg_next_success = reg_next_success
reg_next_success = False
next_images = mapper.find_next_images(mapper_options)
if len(next_images) == 0:
break
for reg_trial in range(len(next_images)):
next_image_id = next_images[reg_trial]
logging.info(
f"Registering image #{next_image_id} "
f"({reconstruction.num_reg_images() + 1})"
)
num_vis = mapper.observation_manager.num_visible_points3D(
next_image_id
)
num_obs = mapper.observation_manager.num_observations(next_image_id)
logging.info(f"=> Image sees {num_vis} / {num_obs} points")
reg_next_success = mapper.register_next_image(
mapper_options, next_image_id
)
if reg_next_success:
break
else:
logging.info("=> Could not register, trying another image.")
# If initial pair fails to continue for some time,
# abort and try different initial pair.
kMinNumInitialRegTrials = 30
if (
reg_trial >= kMinNumInitialRegTrials
and reconstruction.num_reg_images() < options.min_model_size
):
break
if reg_next_success:
mapper.triangulate_image(options.get_triangulation(), next_image_id)
# The following is equivalent to mapper.iterative_local_refinement(...)
custom_bundle_adjustment.iterative_local_refinement(
mapper,
options.ba_local_max_refinements,
options.ba_local_max_refinement_change,
mapper_options,
options.get_local_bundle_adjustment(),
options.get_triangulation(),
next_image_id,
)
if controller.check_run_global_refinement(
reconstruction, ba_prev_num_reg_images, ba_prev_num_points
):
iterative_global_refinement(options, mapper_options, mapper)
ba_prev_num_points = reconstruction.num_points3D()
ba_prev_num_reg_images = reconstruction.num_reg_images()
if options.extract_colors:
extract_colors(
controller.image_path, next_image_id, reconstruction
)
if (
options.snapshot_images_freq > 0
and reconstruction.num_reg_images()
>= options.snapshot_images_freq + snapshot_prev_num_reg_images
):
snapshot_prev_num_reg_images = reconstruction.num_reg_images()
write_snapshot(reconstruction, Path(options.snapshot_path))
controller.callback(
pycolmap.IncrementalMapperCallback.NEXT_IMAGE_REG_CALLBACK
)
if mapper.num_shared_reg_images() >= int(options.max_model_overlap):
break
if (not reg_next_success) and prev_reg_next_success:
iterative_global_refinement(options, mapper_options, mapper)
if (
reconstruction.num_reg_images() >= 2
and reconstruction.num_reg_images() != ba_prev_num_reg_images
and reconstruction.num_points3D != ba_prev_num_points
):
iterative_global_refinement(options, mapper_options, mapper)
return pycolmap.IncrementalMapperStatus.SUCCESS
def reconstruct(controller, mapper_options):
"""Equivalent to IncrementalMapperController.reconstruct(...)"""
options = controller.options
reconstruction_manager = controller.reconstruction_manager
database_cache = controller.database_cache
mapper = pycolmap.IncrementalMapper(database_cache)
initial_reconstruction_given = reconstruction_manager.size() > 0
if reconstruction_manager.size() > 1:
logging.fatal(
"Can only resume from a single reconstruction, but multiple are given"
)
for num_trials in range(options.init_num_trials):
if (not initial_reconstruction_given) or num_trials > 0:
reconstruction_idx = reconstruction_manager.add()
else:
reconstruction_idx = 0
reconstruction = reconstruction_manager.get(reconstruction_idx)
status = reconstruct_sub_model(
controller, mapper, mapper_options, reconstruction
)
if status == pycolmap.IncrementalMapperStatus.INTERRUPTED:
mapper.end_reconstruction(False)
elif status in (
pycolmap.IncrementalMapperStatus.NO_INITIAL_PAIR,
pycolmap.IncrementalMapperStatus.BAD_INITIAL_PAIR,
):
mapper.end_reconstruction(True)
reconstruction_manager.delete(reconstruction_idx)
if options.is_initial_pair_provided():
return
elif status == pycolmap.IncrementalMapperStatus.SUCCESS:
total_num_reg_images = mapper.num_total_reg_images()
min_model_size = min(
0.8 * database_cache.num_images(), options.min_model_size
)
if (
options.multiple_models
and reconstruction_manager.size() > 1
and (
reconstruction.num_reg_images() < min_model_size
or reconstruction.num_reg_images() == 0
)
):
mapper.end_reconstruction(True)
reconstruction_manager.delete(reconstruction_idx)
else:
mapper.end_reconstruction(False)
controller.callback(
pycolmap.IncrementalMapperCallback.LAST_IMAGE_REG_CALLBACK
)
if (
initial_reconstruction_given
or (not options.multiple_models)
or reconstruction_manager.size() >= options.max_num_models
or total_num_reg_images >= database_cache.num_images() - 1
):
return
else:
logging.fatal(f"Unknown reconstruction status: {status}")
def main_incremental_mapper(controller):
"""Equivalent to IncrementalMapperController.run()"""
timer = pycolmap.Timer()
timer.start()
if not controller.load_database():
return
init_mapper_options = controller.options.get_mapper()
reconstruct(controller, init_mapper_options)
for i in range(2): # number of relaxations
if controller.reconstruction_manager.size() > 0:
break
logging.info("=> Relaxing the initialization constraints")
init_mapper_options.init_min_num_inliers = int(
init_mapper_options.init_min_num_inliers / 2
)
reconstruct(controller, init_mapper_options)
if controller.reconstruction_manager.size() > 0:
break
logging.info("=> Relaxing the initialization constraints")
init_mapper_options.init_min_tri_angle /= 2
reconstruct(controller, init_mapper_options)
timer.print_minutes()
def main(
database_path,
image_path,
output_path,
options=pycolmap.IncrementalPipelineOptions(),
input_path=None,
):
if not database_path.exists():
logging.fatal(f"Database path does not exist: {database_path}")
if not image_path.exists():
logging.fatal(f"Image path does not exist: {image_path}")
output_path.mkdir(exist_ok=True, parents=True)
reconstruction_manager = pycolmap.ReconstructionManager()
if input_path is not None and input_path != "":
reconstruction_manager.read(input_path)
mapper = pycolmap.IncrementalMapperController(
options, image_path, database_path, reconstruction_manager
)
# main runner
num_images = pycolmap.Database(database_path).num_images
with enlighten.Manager() as manager:
with manager.counter(
total=num_images, desc="Images registered:"
) as pbar:
pbar.update(0, force=True)
mapper.add_callback(
pycolmap.IncrementalMapperCallback.INITIAL_IMAGE_PAIR_REG_CALLBACK,
lambda: pbar.update(2),
)
mapper.add_callback(
pycolmap.IncrementalMapperCallback.NEXT_IMAGE_REG_CALLBACK,
lambda: pbar.update(1),
)
main_incremental_mapper(mapper)
# write and output
reconstruction_manager.write(output_path)
reconstructions = {}
for i in range(reconstruction_manager.size()):
reconstructions[i] = reconstruction_manager.get(i)
return reconstructions
|