1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
# Copyright (c) 2023, ETH Zurich and UNC Chapel Hill.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
# its contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# This script converts a Bundler reconstruction file to a PLY point cloud.
import argparse
import numpy as np
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--bundler_path", required=True)
parser.add_argument("--ply_path", required=True)
parser.add_argument("--normalize", type=bool, default=True)
parser.add_argument("--normalize_p0", type=float, default=0.2)
parser.add_argument("--normalize_p1", type=float, default=0.8)
parser.add_argument("--min_track_length", type=int, default=3)
args = parser.parse_args()
return args
def main():
args = parse_args()
with open(args.bundler_path, "r") as fid:
line = fid.readline()
line = fid.readline()
num_images, num_points = map(int, line.split())
for i in range(5 * num_images):
fid.readline()
xyz = np.zeros((num_points, 3), dtype=np.float64)
rgb = np.zeros((num_points, 3), dtype=np.uint16)
track_lengths = np.zeros((num_points,), dtype=np.uint32)
for i in range(num_points):
if i % 1000 == 0:
print("Reading point", i, "/", num_points)
xyz[i] = map(float, fid.readline().split())
rgb[i] = map(int, fid.readline().split())
track_lengths[i] = int(fid.readline().split()[0])
mask = track_lengths >= args.min_track_length
xyz = xyz[mask]
rgb = rgb[mask]
if args.normalize:
sorted_x = np.sort(xyz[:, 0])
sorted_y = np.sort(xyz[:, 1])
sorted_z = np.sort(xyz[:, 2])
num_coords = sorted_x.size
min_coord = int(args.normalize_p0 * num_coords)
max_coord = int(args.normalize_p1 * num_coords)
mean_coords = xyz.mean(0)
bbox_min = np.array(
[sorted_x[min_coord], sorted_y[min_coord], sorted_z[min_coord]]
)
bbox_max = np.array(
[sorted_x[max_coord], sorted_y[max_coord], sorted_z[max_coord]]
)
extent = np.linalg.norm(bbox_max - bbox_min)
scale = 10.0 / extent
xyz -= mean_coords
xyz *= scale
xyz[:, 2] *= -1
with open(args.ply_path, "w") as fid:
fid.write("ply\n")
fid.write("format ascii 1.0\n")
fid.write("element vertex %d\n" % xyz.shape[0])
fid.write("property float x\n")
fid.write("property float y\n")
fid.write("property float z\n")
fid.write("property float nx\n")
fid.write("property float ny\n")
fid.write("property float nz\n")
fid.write("property uchar diffuse_red\n")
fid.write("property uchar diffuse_green\n")
fid.write("property uchar diffuse_blue\n")
fid.write("end_header\n")
for i in range(xyz.shape[0]):
if i % 1000 == 0:
print("Writing point", i, "/", xyz.shape[0])
fid.write(
"%f %f %f 0 0 0 %d %d %d\n"
% (
xyz[i, 0],
xyz[i, 1],
xyz[i, 2],
rgb[i, 0],
rgb[i, 1],
rgb[i, 2],
)
)
if __name__ == "__main__":
main()
|