File: read_write_fused_vis.py

package info (click to toggle)
colmap 3.10-2.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,168 kB
  • sloc: cpp: 91,779; ansic: 17,774; python: 3,459; sh: 216; makefile: 154
file content (132 lines) | stat: -rwxr-xr-x 5,201 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/usr/bin/env python

# Copyright (c) 2023, ETH Zurich and UNC Chapel Hill.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
#     * Redistributions of source code must retain the above copyright
#       notice, this list of conditions and the following disclaimer.
#
#     * Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#     * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
#       its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.


import os
import collections
import numpy as np
import pandas as pd
from pyntcloud import PyntCloud

from read_write_model import read_next_bytes, write_next_bytes


MeshPoint = collections.namedtuple(
    "MeshingPoint",
    ["position", "color", "normal", "num_visible_images", "visible_image_idxs"],
)


def read_fused(path_to_fused_ply, path_to_fused_ply_vis):
    """
    see: src/mvs/meshing.cc
        void ReadDenseReconstruction(const std::string& path
    """
    assert os.path.isfile(path_to_fused_ply)
    assert os.path.isfile(path_to_fused_ply_vis)

    point_cloud = PyntCloud.from_file(path_to_fused_ply)
    xyz_arr = point_cloud.points.loc[:, ["x", "y", "z"]].to_numpy()
    normal_arr = point_cloud.points.loc[:, ["nx", "ny", "nz"]].to_numpy()
    color_arr = point_cloud.points.loc[:, ["red", "green", "blue"]].to_numpy()

    with open(path_to_fused_ply_vis, "rb") as fid:
        num_points = read_next_bytes(fid, 8, "Q")[0]
        mesh_points = [0] * num_points
        for i in range(num_points):
            num_visible_images = read_next_bytes(fid, 4, "I")[0]
            visible_image_idxs = read_next_bytes(
                fid,
                num_bytes=4 * num_visible_images,
                format_char_sequence="I" * num_visible_images,
            )
            visible_image_idxs = np.array(tuple(map(int, visible_image_idxs)))
            mesh_point = MeshPoint(
                position=xyz_arr[i],
                color=color_arr[i],
                normal=normal_arr[i],
                num_visible_images=num_visible_images,
                visible_image_idxs=visible_image_idxs,
            )
            mesh_points[i] = mesh_point
        return mesh_points


def write_fused_ply(mesh_points, path_to_fused_ply):
    columns = ["x", "y", "z", "nx", "ny", "nz", "red", "green", "blue"]
    points_data_frame = pd.DataFrame(
        np.zeros((len(mesh_points), len(columns))), columns=columns
    )

    positions = np.asarray([point.position for point in mesh_points])
    normals = np.asarray([point.normal for point in mesh_points])
    colors = np.asarray([point.color for point in mesh_points])

    points_data_frame.loc[:, ["x", "y", "z"]] = positions
    points_data_frame.loc[:, ["nx", "ny", "nz"]] = normals
    points_data_frame.loc[:, ["red", "green", "blue"]] = colors

    points_data_frame = points_data_frame.astype(
        {
            "x": positions.dtype,
            "y": positions.dtype,
            "z": positions.dtype,
            "red": colors.dtype,
            "green": colors.dtype,
            "blue": colors.dtype,
            "nx": normals.dtype,
            "ny": normals.dtype,
            "nz": normals.dtype,
        }
    )

    point_cloud = PyntCloud(points_data_frame)
    point_cloud.to_file(path_to_fused_ply)


def write_fused_ply_vis(mesh_points, path_to_fused_ply_vis):
    """
    see: src/mvs/fusion.cc
        void WritePointsVisibility(const std::string& path, const std::vector<std::vector<int>>& points_visibility)
    """
    with open(path_to_fused_ply_vis, "wb") as fid:
        write_next_bytes(fid, len(mesh_points), "Q")
        for point in mesh_points:
            write_next_bytes(fid, point.num_visible_images, "I")
            format_char_sequence = "I" * point.num_visible_images
            write_next_bytes(
                fid, [*point.visible_image_idxs], format_char_sequence
            )


def write_fused(points, path_to_fused_ply, path_to_fused_ply_vis):
    write_fused_ply(points, path_to_fused_ply)
    write_fused_ply_vis(points, path_to_fused_ply_vis)