File: imc.py

package info (click to toggle)
colmap 3.12.6-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,928 kB
  • sloc: cpp: 101,944; ansic: 17,774; python: 4,958; sh: 366; makefile: 158
file content (172 lines) | stat: -rw-r--r-- 5,733 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Copyright (c), ETH Zurich and UNC Chapel Hill.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
#     * Redistributions of source code must retain the above copyright
#       notice, this list of conditions and the following disclaimer.
#
#     * Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#     * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
#       its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.

from pathlib import Path

import pycolmap

from .utils import Dataset, SceneInfo


class _DatasetIMC(Dataset):
    def __init__(
        self,
        data_path: Path,
        categories: list[str],
        scenes: list[Path],
        run_path: Path,
        run_name: str,
        year: int,
    ):
        super().__init__()
        self.data_path = data_path
        self.categories = categories
        self.scenes = scenes
        self.run_path = run_path
        self.run_name = run_name
        self.year = year

    @property
    def position_accuracy_gt(self):
        return 0.02

    def list_scenes(self):
        folder_name = f"imc{self.year}"

        scene_infos = []
        for category_path in Path(
            self.data_path / f"{folder_name}/train"
        ).iterdir():
            if not category_path.is_dir() or (
                self.categories and category_path.name not in self.categories
            ):
                continue

            category = category_path.name

            for scene_path in category_path.iterdir():
                if not scene_path.is_dir():
                    continue

                scene = scene_path.name
                if self.scenes and scene not in self.scenes:
                    continue

                sfm_path = scene_path / "sfm"
                if not sfm_path.exists():
                    pycolmap.logging.warning(
                        f"Skipping dataset=IMC{self.year}, "
                        f"category={category}, scene={scene}, "
                        "because the GT reconstruction is missing"
                    )
                    continue

                workspace_path = (
                    self.run_path
                    / self.run_name
                    / folder_name
                    / category
                    / scene
                )
                image_path = scene_path / "images"
                sparse_gt_path = scene_path / "sparse_gt"

                scene_info = SceneInfo(
                    dataset=f"IMC{self.year}",
                    category=category,
                    scene=scene,
                    workspace_path=workspace_path,
                    image_path=image_path,
                    sparse_gt_path=sparse_gt_path,
                    camera_priors_from_sparse_gt=False,
                    colmap_extra_args=None,
                )

                scene_infos.append(scene_info)

        return scene_infos

    def prepare_scene(self, scene_info):
        if scene_info.sparse_gt_path.exists():
            return

        scene_path = scene_info.image_path.parent
        sfm_path = scene_path / "sfm"
        train_image_names = set(
            image.name for image in scene_info.image_path.iterdir()
        )
        sparse_sfm = pycolmap.Reconstruction(sfm_path)
        sparse_gt = pycolmap.Reconstruction()
        for image in sparse_sfm.images.values():
            if image.name not in train_image_names:
                continue
            if image.camera_id not in sparse_gt.cameras:
                sparse_gt.add_camera(image.camera)
            image.reset_camera_ptr()
            sparse_gt.add_image(image)
        scene_info.sparse_gt_path.mkdir(exist_ok=True)
        sparse_gt.write(scene_info.sparse_gt_path)


class DatasetIMC2023(_DatasetIMC):
    def __init__(
        self,
        data_path: Path,
        categories: list[str],
        scenes: list[Path],
        run_path: Path,
        run_name: str,
    ):
        super().__init__(
            data_path=data_path,
            categories=categories,
            scenes=scenes,
            run_path=run_path,
            run_name=run_name,
            year=2023,
        )


class DatasetIMC2024(_DatasetIMC):
    def __init__(
        self,
        data_path: Path,
        categories: list[str],
        scenes: list[Path],
        run_path: Path,
        run_name: str,
    ):
        super().__init__(
            data_path=data_path,
            categories=categories,
            scenes=scenes,
            run_path=run_path,
            run_name=run_name,
            year=2024,
        )