File: utils.py

package info (click to toggle)
colmap 3.12.6-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,928 kB
  • sloc: cpp: 101,944; ansic: 17,774; python: 4,958; sh: 366; makefile: 158
file content (849 lines) | stat: -rw-r--r-- 29,719 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
# Copyright (c), ETH Zurich and UNC Chapel Hill.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
#     * Redistributions of source code must retain the above copyright
#       notice, this list of conditions and the following disclaimer.
#
#     * Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#     * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
#       its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.

import argparse
import collections
import copy
import dataclasses
import datetime
import functools
import multiprocessing
import shutil
import subprocess
from abc import ABC, abstractmethod
from pathlib import Path

import numpy as np

import pycolmap


@dataclasses.dataclass(kw_only=True)
class SceneInfo:
    # Dataset name.
    dataset: str
    # Category name.
    category: str
    # Scene name.
    scene: str
    # Path to the workspace directory in the run directory.
    workspace_path: Path
    # Path to the input images.
    image_path: Path
    # Path to the ground-truth sparse reconstruction.
    sparse_gt_path: Path
    # Whether to update camera priors from the ground-truth reconstruction.
    camera_priors_from_sparse_gt: bool
    # Additional arguments for the COLMAP reconstruction command.
    colmap_extra_args: list[str]


@dataclasses.dataclass(kw_only=True)
class SceneResult:
    # Scene information for which the result was computed.
    scene_info: SceneInfo
    # Flat list of errors.
    errors: np.ndarray
    # Number of images in the scene.
    num_images: int
    # Number of registered images in the scene (over all components).
    num_reg_images: int
    # Number of components in the scene.
    num_components: int
    # Number of images in the largest component.
    largest_component: int


@dataclasses.dataclass(kw_only=True)
class SceneMetrics:
    # Area under the curve (AUC) scores at specified error thresholds.
    aucs: np.ndarray
    error_thresholds: np.ndarray
    error_type: str
    # Number of images in the scene.
    num_images: int
    # Number of registered images in the scene (over all components).
    num_reg_images: int
    # Number of components in the scene.
    num_components: int
    # Number of images in the largest component.
    largest_component: int


class Dataset(ABC):
    @property
    @abstractmethod
    def position_accuracy_gt(self) -> float:
        """Ground-truth position accuracy in meters."""
        pass

    @abstractmethod
    def list_scenes(self) -> list[SceneInfo]:
        """List all scenes to evaluate."""
        pass

    @abstractmethod
    def prepare_scene(self, scene_info: SceneInfo) -> None:
        """Prepare the scene for reconstruction."""
        pass


def parse_args() -> argparse.Namespace:
    datetime_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--data_path", default=Path(__file__).parent / "data", type=Path
    )
    parser.add_argument(
        "--datasets",
        nargs="+",
        default=["eth3d", "blended-mvs", "imc2023", "imc2024"],
    )
    parser.add_argument(
        "--categories",
        nargs="+",
        default=[],
        help="Categories to evaluate, if empty all categories are evaluated.",
    )
    parser.add_argument(
        "--scenes",
        nargs="+",
        default=[],
        help="Scenes to evaluate, if empty all scenes are evaluated.",
    )
    parser.add_argument(
        "--run_path", default=Path(__file__).parent / "runs", type=Path
    )
    parser.add_argument("--run_name", default=datetime_str)
    parser.add_argument("--report_name", default=f"report-{datetime_str}")
    parser.add_argument(
        "--overwrite_database", default=False, action="store_true"
    )
    parser.add_argument(
        "--overwrite_matches", default=False, action="store_true"
    )
    parser.add_argument(
        "--overwrite_reconstruction", default=False, action="store_true"
    )
    parser.add_argument(
        "--overwrite_alignment", default=False, action="store_true"
    )
    parser.add_argument("--colmap_path", required=True)
    parser.add_argument("--use_gpu", default=True, action="store_true")
    parser.add_argument("--use_cpu", dest="use_gpu", action="store_false")
    parser.add_argument(
        "--parallelism",
        type=int,
        default=multiprocessing.cpu_count(),
        help="Number of processes for parallel reconstruction.",
    )
    parser.add_argument("--quality", default="high")
    parser.add_argument(
        "--error_type",
        default="relative",
        choices=["relative", "absolute"],
        help="Whether to evaluate relative pairwise pose errors in angular "
        "distance or absolute pose errors through GT alignment.",
    )
    parser.add_argument(
        "--rel_error_thresholds",
        type=float,
        nargs="+",
        default=[0.5, 1, 5, 10],
        help="Evaluation thresholds in degrees.",
    )
    parser.add_argument(
        "--abs_error_thresholds",
        type=float,
        nargs="+",
        default=[0.02, 0.05, 0.2, 0.5],
        help="Evaluation thresholds in meters.",
    )
    args = parser.parse_args()
    args.colmap_path = Path(args.colmap_path).resolve()
    if args.overwrite_database:
        pycolmap.logging.info(
            "Overwriting database also overwrites reconstruction"
        )
        args.overwrite_reconstruction = True
    if args.overwrite_matches:
        pycolmap.logging.info(
            "Overwriting matches also overwrites reconstruction"
        )
        args.overwrite_reconstruction = True
    if args.overwrite_reconstruction:
        pycolmap.logging.info(
            "Overwriting reconstruction also overwrites alignment"
        )
        args.overwrite_alignment = True
    return args


def update_camera_priors_from_sparse_gt(
    database_path: Path, camera_priors_sparse_gt: pycolmap.Reconstruction
) -> None:
    pycolmap.logging.info("Setting prior cameras from GT")

    database = pycolmap.Database()
    database.open(database_path)

    camera_id_gt_to_camera_id = {}
    for camera_id_gt, camera_gt in camera_priors_sparse_gt.cameras.items():
        camera_gt.has_prior_focal_length = True
        camera_id = database.write_camera(camera_gt)
        camera_id_gt_to_camera_id[camera_id_gt] = camera_id

    images_gt_by_name = {}
    for image_gt in camera_priors_sparse_gt.images.values():
        images_gt_by_name[image_gt.name] = image_gt

    for image in database.read_all_images():
        if image.name not in images_gt_by_name:
            pycolmap.logging.warning(
                f"Not setting prior camera for image {image.name}, "
                "because it does not exist in GT"
            )
            continue
        image_gt = images_gt_by_name[image.name]
        camera_id = camera_id_gt_to_camera_id[image_gt.camera_id]
        image.camera_id = camera_id
        database.update_image(image)

    database.close()


def colmap_reconstruction(
    args: argparse.Namespace,
    workspace_path: Path,
    image_path: Path,
    camera_priors_sparse_gt: pycolmap.Reconstruction = None,
    colmap_extra_args: list = None,
    num_threads: int = 1,
) -> None:
    workspace_path.mkdir(parents=True, exist_ok=True)

    database_path = workspace_path / "database.db"
    if args.overwrite_database and database_path.exists():
        database_path.unlink()

    sparse_path = workspace_path / "sparse"
    if args.overwrite_reconstruction and sparse_path.exists():
        shutil.rmtree(sparse_path)

    if sparse_path.exists():
        pycolmap.logging.info("Skipping reconstruction, as it already exists")
        return

    if args.overwrite_matches:
        subprocess.check_call(
            [
                args.colmap_path,
                "database_cleaner",
                "--database_path",
                database_path,
                "--type",
                "matches",
            ],
            cwd=workspace_path,
        )

    # TODO: Expose automatic reconstruction through pycolmap bindings instead
    # of using the command line interface. One blocker for this is that we
    # currently do not produce CUDA enabled pycolmap packages.
    colmap_args = [
        args.colmap_path,
        "automatic_reconstructor",
        "--image_path",
        image_path,
        "--workspace_path",
        workspace_path,
        "--vocab_tree_path",
        args.data_path / "vocab_tree_flickr100K_words256K.bin",
        "--use_gpu",
        "1" if args.use_gpu else "0",
        "--num_threads",
        str(num_threads),
        "--quality",
        args.quality,
    ]

    subprocess.check_call(
        colmap_args
        + (colmap_extra_args or [])
        + [
            "--extraction",
            "1",
            "--matching",
            "0",
            "--sparse",
            "0",
            "--dense",
            "0",
        ],
        cwd=workspace_path,
    )

    if camera_priors_sparse_gt is not None:
        update_camera_priors_from_sparse_gt(
            database_path, camera_priors_sparse_gt
        )

    subprocess.check_call(
        colmap_args
        + (colmap_extra_args or [])
        + [
            "--extraction",
            "0",
            "--matching",
            "1",
            "--sparse",
            "0",
            "--dense",
            "0",
        ],
        cwd=workspace_path,
    )

    # Decouple matching from sparse reconstruction, because matching will
    # initialize an OpenGL context and Mac on Apple silicon tends to assign GUI
    # applications to the low efficiency cores but we want to use the
    # performance cores.
    subprocess.check_call(
        colmap_args
        + (colmap_extra_args or [])
        + [
            "--extraction",
            "0",
            "--matching",
            "0",
            "--sparse",
            "1",
            "--dense",
            "0",
        ],
        cwd=workspace_path,
    )


def colmap_alignment(
    args: argparse.Namespace,
    sparse_path: Path,
    sparse_gt_path: Path,
    sparse_aligned_path: Path,
    max_ref_model_error: float,
) -> None:
    if args.overwrite_alignment and sparse_aligned_path.exists():
        shutil.rmtree(sparse_aligned_path)
    if sparse_aligned_path.exists():
        pycolmap.logging.info("Skipping alignment, as it already exists")
        return

    if sparse_path.exists():
        sparse_aligned_path.mkdir(parents=True, exist_ok=True)
        subprocess.call(
            [
                args.colmap_path,
                "model_aligner",
                "--input_path",
                sparse_path,
                "--ref_model_path",
                sparse_gt_path,
                "--output_path",
                sparse_aligned_path,
                "--alignment_max_error",
                str(max_ref_model_error),
            ]
        )


def process_scene(
    args: argparse.Namespace,
    scene_info: SceneInfo,
    prepare_scene: callable,
    position_accuracy_gt: float,
    num_threads: int,
) -> SceneResult:
    pycolmap.logging.info(
        f"Processing dataset={scene_info.dataset}, "
        f"category={scene_info.category}, "
        f"scene={scene_info.scene}"
    )

    prepare_scene(scene_info)

    sparse_gt = pycolmap.Reconstruction(scene_info.sparse_gt_path)

    colmap_reconstruction(
        args=args,
        workspace_path=scene_info.workspace_path,
        image_path=scene_info.image_path,
        camera_priors_sparse_gt=(
            sparse_gt if scene_info.camera_priors_from_sparse_gt else None
        ),
        num_threads=num_threads,
        colmap_extra_args=scene_info.colmap_extra_args,
    )

    # Merge all sub-models into a single reconstruction. Each sub-model will be
    # "randomly" aligned to the other sub-models. We then compute the overall
    # error over the merged reconstruction. With this simple appraoch, there is
    # a small chance that the randomly aligned images in one sub-model are
    # correctly aligned with other sub-models and the error is therefore
    # underestimated. However, this is very unlikely to happen.
    sparse_merged = pycolmap.Reconstruction()
    num_components = 0
    largest_component = 0
    for sparse_path in (scene_info.workspace_path / "sparse").iterdir():
        if not sparse_path.is_dir():
            continue
        num_components += 1
        sparse = None
        if args.error_type == "relative":
            sparse = pycolmap.Reconstruction(sparse_path)
        elif args.error_type == "absolute":
            sparse_aligned_path = scene_info.workspace_path / "sparse_aligned"
            colmap_alignment(
                args=args,
                sparse_path=sparse_path,
                sparse_gt_path=scene_info.sparse_gt_path,
                sparse_aligned_path=sparse_aligned_path,
                max_ref_model_error=position_accuracy_gt,
            )
            if (sparse_aligned_path / "images.bin").exists():
                sparse = pycolmap.Reconstruction(sparse_aligned_path)
        else:
            raise ValueError(f"Invalid error type: {args.error_type}")

        if sparse is not None:
            largest_component = max(largest_component, sparse.num_images())
            for image in sparse.images.values():
                if image.image_id in sparse_merged.images:
                    continue
                if image.camera_id not in sparse_merged.cameras:
                    sparse_merged.add_camera(image.camera)
                if image.frame_id not in sparse_merged.frames:
                    if image.frame.rig_id not in sparse_merged.rigs:
                        sparse_merged.add_rig(image.frame.rig)
                    image.frame.reset_rig_ptr()
                    sparse_merged.add_frame(image.frame)
                image.reset_camera_ptr()
                image.reset_frame_ptr()
                sparse_merged.add_image(image)

    if args.error_type == "relative":
        dts, dRs = compute_rel_errors(
            sparse_gt=sparse_gt,
            sparse=sparse_merged,
            min_proj_center_dist=position_accuracy_gt,
        )
        errors = np.maximum(dts, dRs)
    elif args.error_type == "absolute":
        dts, dRs = compute_abs_errors(
            sparse_gt=sparse_gt,
            sparse=sparse_merged,
        )
        errors = dts
    else:
        raise ValueError(f"Invalid error type: {args.error_type}")

    return SceneResult(
        scene_info=scene_info,
        errors=errors,
        num_images=sparse_gt.num_images(),
        num_reg_images=sparse_merged.num_images(),
        num_components=num_components,
        largest_component=largest_component,
    )


def process_scenes(
    args: argparse.Namespace,
    scene_infos: list[SceneInfo],
    prepare_scene: callable,
    position_accuracy_gt: float,
) -> dict[str, dict[str, SceneMetrics]]:
    error_thresholds = get_error_thresholds(args)

    num_threads = min(
        args.parallelism, 2 * max(1, int(args.parallelism / len(scene_infos)))
    )
    with multiprocessing.Pool(processes=args.parallelism) as p:
        results = p.map(
            functools.partial(
                process_scene,
                args,
                prepare_scene=prepare_scene,
                position_accuracy_gt=position_accuracy_gt,
                num_threads=num_threads,
            ),
            scene_infos,
        )

    metrics = collections.defaultdict(dict)
    errors_by_category = collections.defaultdict(list)
    total_num_images = 0
    total_num_reg_images = 0
    total_num_components = 0
    total_largest_components = 0
    num_scenes = len(results)
    for result in results:
        errors_by_category[result.scene_info.category].extend(result.errors)
        total_num_images += result.num_images
        total_num_reg_images += result.num_reg_images
        total_num_components += result.num_components
        total_largest_components += result.largest_component
        metrics[result.scene_info.category][result.scene_info.scene] = (
            SceneMetrics(
                aucs=compute_auc(
                    result.errors,
                    error_thresholds,
                    min_error=position_accuracy_gt,
                ),
                error_thresholds=error_thresholds,
                error_type=args.error_type,
                num_images=result.num_images,
                num_reg_images=result.num_reg_images,
                num_components=result.num_components,
                largest_component=result.largest_component,
            )
        )

    for category, errors in errors_by_category.items():
        metrics[category]["__all__"] = SceneMetrics(
            aucs=compute_auc(
                errors,
                error_thresholds,
                min_error=position_accuracy_gt,
            ),
            error_thresholds=error_thresholds,
            error_type=args.error_type,
            num_images=total_num_images,
            num_reg_images=total_num_reg_images,
            num_components=total_num_components,
            largest_component=total_largest_components,
        )
        metrics[category]["__avg__"] = SceneMetrics(
            aucs=compute_avg_auc(metrics[category]),
            error_thresholds=error_thresholds,
            error_type=args.error_type,
            num_images=int(round(total_num_images / num_scenes)),
            num_reg_images=int(round(total_num_reg_images / num_scenes)),
            num_components=int(round(total_num_components / num_scenes)),
            largest_component=int(round(total_largest_components / num_scenes)),
        )

    return metrics


def normalize_vec(vec: np.ndarray, eps: float = 1e-10) -> np.ndarray:
    return vec / max(eps, np.linalg.norm(vec))


def vec_angular_dist_deg(vec1: np.ndarray, vec2: np.ndarray) -> float:
    cos_dist = np.clip(np.dot(normalize_vec(vec1), normalize_vec(vec2)), -1, 1)
    return np.rad2deg(np.acos(cos_dist))


def get_error_thresholds(args: argparse.Namespace) -> list[float]:
    if args.error_type == "relative":
        return np.array(args.rel_error_thresholds)
    elif args.error_type == "absolute":
        return np.array(args.abs_error_thresholds)
    else:
        raise ValueError(f"Invalid error type: {args.error_type}")


def compute_rel_errors(
    sparse_gt: pycolmap.Reconstruction,
    sparse: pycolmap.Reconstruction,
    min_proj_center_dist: float,
) -> tuple[np.ndarray, np.ndarray]:
    """Computes angular relative pose errors across all image pairs.

    Notice that this approach leads to a super-linear decrease in the AUC scores
    when multiple images fail to register. Consider that we have N images in
    total in a dataset and M images are registered in the evaluated
    reconstruction. In this case, we can compute "finite" errors for (N-M)^2
    pairs while the dataset has a total of N^2 pairs. In case of many
    unregistered images, the AUC score will drop much more than the
    (intuitively) expected (N-M) / N ratio. One could appropriately normalize by
    computing a single score per image through a suitable normalization of all
    pairwise errors per image. However, this becomes difficult when multiple
    sub-components are incorrectly stitched together in the same reconstruction
    (e.g., in the case of symmetry issues).
    """

    if sparse is None:
        pycolmap.logging.error("Reconstruction failed")
        return len(sparse_gt.images) * [np.inf], len(sparse_gt.images) * [180]

    images = {}
    for image in sparse.images.values():
        images[image.name] = image

    dts = []
    dRs = []
    for this_image_gt in sparse_gt.images.values():
        if this_image_gt.name not in images:
            for _ in range(sparse_gt.num_images() - 1):
                dts.append(np.inf)
                dRs.append(180)
            continue

        this_image = images[this_image_gt.name]

        for other_image_gt in sparse_gt.images.values():
            if this_image_gt.image_id == other_image_gt.image_id:
                continue

            if other_image_gt.name not in images:
                dts.append(np.inf)
                dRs.append(180)
                continue

            other_image = images[other_image_gt.name]

            other_from_this = (
                other_image.cam_from_world()
                * this_image.cam_from_world().inverse()
            )
            other_from_this_gt = (
                other_image_gt.cam_from_world()
                * this_image_gt.cam_from_world().inverse()
            )

            estimated_from_gt = other_from_this.inverse() * other_from_this_gt

            if (
                np.linalg.norm(other_from_this_gt.translation)
                < min_proj_center_dist
            ):
                # If the cameras almost coincide, then the angular direction
                # distance is unstable, because a small position change can
                # cause a large rotational error. In this case, we only measure
                # rotational relative pose error.
                dt = 0
            else:
                dt = vec_angular_dist_deg(
                    other_from_this.translation, other_from_this_gt.translation
                )

            dR = np.rad2deg(estimated_from_gt.rotation.angle())

            dts.append(dt)
            dRs.append(dR)

    return np.array(dts), np.array(dRs)


def compute_abs_errors(
    sparse_gt: pycolmap.Reconstruction, sparse: pycolmap.Reconstruction
) -> tuple[np.ndarray, np.ndarray]:
    """Computes rotational and translational absolute pose errors.

    Assumes that the input reconstructions are aligned in the same coordinate
    system. Computes one error per ground-truth image.
    """

    dts = np.full(len(sparse_gt.images), fill_value=np.inf, dtype=np.float64)
    dRs = np.full(len(sparse_gt.images), fill_value=180, dtype=np.float64)

    if sparse is None:
        pycolmap.logging.error("Reconstruction or alignment failed")
        return dts, dRs

    images = {}
    for image in sparse.images.values():
        images[image.name] = image

    dts = np.full(len(sparse_gt.images), fill_value=np.inf, dtype=np.float64)
    dRs = np.full(len(sparse_gt.images), fill_value=180, dtype=np.float64)
    for i, image_gt in enumerate(sparse_gt.images.values()):
        if image_gt.name not in images:
            continue

        image = images[image_gt.name]

        estimated_from_gt = (
            image.cam_from_world() * image_gt.cam_from_world().inverse()
        )

        dts[i] = np.linalg.norm(estimated_from_gt.translation)
        dRs[i] = np.rad2deg(estimated_from_gt.rotation.angle())

    return dts, dRs


def compute_recall(errors: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
    num_elements = len(errors)
    errors = np.sort(errors)
    recall = (np.arange(num_elements) + 1) / num_elements
    return errors, recall


def compute_auc(
    errors: np.ndarray, thresholds: list[float], min_error: float = 0
) -> list[float]:
    if len(errors) == 0:
        raise ValueError("No errors to evaluate")

    errors, recall = compute_recall(errors)

    if min_error > 0:
        min_index = np.searchsorted(errors, min_error, side="right")
        min_score = min_index / len(errors)
        recall = np.r_[min_score, min_score, recall[min_index:]]
        errors = np.r_[0, min_error, errors[min_index:]]
    else:
        recall = np.r_[0, recall]
        errors = np.r_[0, errors]

    aucs = np.zeros(len(thresholds), dtype=np.float64)
    for i, t in enumerate(thresholds):
        last_index = np.searchsorted(errors, t, side="right")
        r = np.r_[recall[:last_index], recall[last_index - 1]]
        e = np.r_[errors[:last_index], t]
        auc = np.trapezoid(r, x=e) / t
        aucs[i] = auc * 100
    return aucs / 1.1


def compute_avg_auc(scene_metrics: dict[str, SceneMetrics]) -> list[float]:
    auc_sum = None
    num_scenes = 0
    for scene, metrics in scene_metrics.items():
        if scene.startswith("__") and scene.endswith("__"):
            continue
        num_scenes += 1
        if auc_sum is None:
            auc_sum = copy.copy(metrics.aucs)
        else:
            for i in range(len(auc_sum)):
                auc_sum[i] += metrics.aucs[i]
    return np.array(auc_sum) / num_scenes


def diff_metrics(
    metrics_a: dict[str, dict[str, SceneMetrics]],
    metrics_b: dict[str, dict[str, SceneMetrics]],
):
    """Computes difference between two sets of metrics.

    Raises exception if the metrics are inconsistent.
    """
    metrics_diff = copy.deepcopy(metrics_a)
    for dataset, category_metrics_a in metrics_a.items():
        if dataset not in metrics_b:
            raise ValueError(f"Dataset {dataset} not found in metrics_b")
        category_metrics_b = metrics_b[dataset]
        for category, scene_metrics_a in category_metrics_a.items():
            if category not in category_metrics_b:
                raise ValueError(f"Category {category} not found in metrics_b")
            scene_metrics_b = category_metrics_b[category]
            for scene, metrics_a in scene_metrics_a.items():
                if scene not in scene_metrics_b:
                    raise ValueError(f"Scene {scene} not found in metrics_b")
                metrics_b = scene_metrics_b[scene]
                if metrics_a.error_type != metrics_b.error_type or not np.all(
                    metrics_a.error_thresholds == metrics_b.error_thresholds
                ):
                    raise ValueError("Inconsistent error thresholds or types")
                metrics_diff[dataset][category][scene] = SceneMetrics(
                    aucs=metrics_a.aucs - metrics_b.aucs,
                    error_thresholds=metrics_a.error_thresholds,
                    error_type=metrics_a.error_type,
                    num_images=metrics_a.num_images - metrics_b.num_images,
                    num_reg_images=metrics_a.num_reg_images
                    - metrics_b.num_reg_images,
                    num_components=metrics_a.num_components
                    - metrics_b.num_components,
                    largest_component=metrics_a.largest_component
                    - metrics_b.largest_component,
                )
    return metrics_diff


def create_result_table(
    dataset_metrics: dict[str, dict[str, SceneMetrics]],
) -> str:
    first_metrics = next(
        iter(next(iter(next(iter(dataset_metrics.values())).values())).values())
    )
    if first_metrics.error_type == "relative":
        label = "AUC @ X deg (%)"
        thresholds = first_metrics.error_thresholds
    elif first_metrics.error_type == "absolute":
        label = "AUC @ X cm (%)"
        thresholds = 100 * first_metrics.error_thresholds
    else:
        raise ValueError(f"Invalid error type: {first_metrics.error_type}")

    column = "scenes"
    size_scenes = max(
        len(column) + 2,
        max(
            len(s)
            for d in dataset_metrics.values()
            for c in d.values()
            for s in c
        ),
    )
    size_aucs = max(len(label) + 2, len(thresholds) * 7 - 1)
    size_imgs = 12
    size_comps = 12
    size_sep = size_scenes + size_aucs + size_imgs + size_comps + 3
    header = (
        f"{column:=^{size_scenes}} {label:=^{size_aucs}} "
        f"{'images':=^{size_imgs}} {'components':=^{size_comps}}"
    )
    header += "\n" + " " * (size_scenes + 1)
    header += " ".join(f"{str(t).rstrip('.'):^6}" for t in thresholds)
    header += "    reg   all  num largest"
    text = [header]
    for dataset, category_metrics in dataset_metrics.items():
        for category, scene_metrics in category_metrics.items():
            text.append(f"\n{dataset + '=' + category:=^{size_sep}}")
            for scene, metrics in scene_metrics.items():
                assert len(metrics.aucs) == len(thresholds)
                row = ""
                if scene == "__avg__":
                    scene = "average"
                    row += "-" * size_sep + "\n"
                if scene == "__all__":
                    scene = "overall"
                    row += "-" * size_sep + "\n"
                row += f"{scene:<{size_scenes}} "
                row += " ".join(f"{auc:>6.2f}" for auc in metrics.aucs)
                row += f" {metrics.num_reg_images:6d}"
                row += f"{metrics.num_images:6d}"
                row += f" {metrics.num_components:4d}"
                row += f"{metrics.largest_component:8d}"
                text.append(row)
    return "\n".join(text)