File: Dockerfile

package info (click to toggle)
colmap 3.12.6-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,928 kB
  • sloc: cpp: 101,944; ansic: 17,774; python: 4,958; sh: 366; makefile: 158
file content (97 lines) | stat: -rw-r--r-- 2,902 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
ARG UBUNTU_VERSION=24.04
ARG NVIDIA_CUDA_VERSION=12.9.0

#
# Docker builder stage.
#
FROM nvidia/cuda:${NVIDIA_CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION} AS builder

ARG COLMAP_GIT_COMMIT=main
ARG CUDA_ARCHITECTURES=all-major
ENV QT_XCB_GL_INTEGRATION=xcb_egl

# Prevent stop building ubuntu at time zone selection.
ENV DEBIAN_FRONTEND=noninteractive

# Prepare and empty machine for building.
RUN apt-get update && \
    apt-get install -y \
        git \
        cmake \
        ninja-build \
        build-essential \
        libboost-program-options-dev \
        libboost-graph-dev \
        libboost-system-dev \
        libeigen3-dev \
        libfreeimage-dev \
        libmetis-dev \
        libgoogle-glog-dev \
        libgtest-dev \
        libgmock-dev \
        libsqlite3-dev \
        libglew-dev \
        qt6-base-dev \
        libqt6opengl6-dev \
        libqt6openglwidgets6 \
        libcgal-dev \
        libceres-dev \
        libcurl4-openssl-dev \
        libssl-dev \
        libmkl-full-dev

# Build and install COLMAP.
RUN git clone https://github.com/colmap/colmap.git
RUN cd colmap && \
    git fetch https://github.com/colmap/colmap.git ${COLMAP_GIT_COMMIT} && \
    git checkout FETCH_HEAD && \
    mkdir build && \
    cd build && \
    cmake .. \
        -GNinja \
        -DCMAKE_CUDA_ARCHITECTURES=${CUDA_ARCHITECTURES} \
        -DCMAKE_INSTALL_PREFIX=/colmap-install \
        -DBLA_VENDOR=Intel10_64lp && \
    ninja install

#
# Docker runtime stage.
#
FROM nvidia/cuda:${NVIDIA_CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION} AS runtime

# Minimal dependencies to run COLMAP binary compiled in the builder stage.
# Note: this reduces the size of the final image considerably, since all the
# build dependencies are not needed.
RUN apt-get update && \
    apt-get install -y --no-install-recommends --no-install-suggests \
        libboost-program-options1.83.0 \
        libc6 \
        libomp5 \
        libopengl0 \
        libmetis5 \
        libceres4t64 \
        libfreeimage3 \
        libgcc-s1 \
        libgl1 \
        libglew2.2 \
        libgoogle-glog0v6t64 \
        libqt6core6 \
        libqt6gui6 \
        libqt6widgets6 \
        libqt6openglwidgets6 \
        libcurl4 \
        libssl3t64 \
        libmkl-locale \
        libmkl-intel-lp64 \
        libmkl-intel-thread \
        libmkl-core && \
    apt-get clean && \
    rm -rf /var/lib/apt/lists/*

# Copy all files from /colmap-install/ in the builder stage to /usr/local/ in
# the runtime stage. This simulates installing COLMAP in the default location
# (/usr/local/), which simplifies environment variables. It also allows the user
# of this Docker image to use it as a base image for compiling against COLMAP as
# a library. For instance, CMake will be able to find COLMAP easily with the
# command: find_package(COLMAP REQUIRED).
COPY --from=builder /colmap-install/ /usr/local/