File: lsd.c

package info (click to toggle)
colmap 3.5-1
  • links: PTS
  • area: main
  • in suites: buster
  • size: 20,564 kB
  • sloc: ansic: 170,595; cpp: 95,339; python: 2,335; makefile: 183; sh: 51
file content (2250 lines) | stat: -rw-r--r-- 78,112 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
/*----------------------------------------------------------------------------

  LSD - Line Segment Detector on digital images

  This code is part of the following publication and was subject
  to peer review:

    "LSD: a Line Segment Detector" by Rafael Grompone von Gioi,
    Jeremie Jakubowicz, Jean-Michel Morel, and Gregory Randall,
    Image Processing On Line, 2012. DOI:10.5201/ipol.2012.gjmr-lsd
    http://dx.doi.org/10.5201/ipol.2012.gjmr-lsd

  Copyright (c) 2007-2011 rafael grompone von gioi <grompone@gmail.com>

  This program is free software: you can redistribute it and/or modify
  it under the terms of the GNU Affero General Public License as
  published by the Free Software Foundation, either version 3 of the
  License, or (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  GNU Affero General Public License for more details.

  You should have received a copy of the GNU Affero General Public License
  along with this program. If not, see <http://www.gnu.org/licenses/>.

  ----------------------------------------------------------------------------*/

/*----------------------------------------------------------------------------*/
/** @file lsd.c
    LSD module code
    @author rafael grompone von gioi <grompone@gmail.com>
 */
/*----------------------------------------------------------------------------*/

/*----------------------------------------------------------------------------*/
/** @mainpage LSD code documentation

    This is an implementation of the Line Segment Detector described
    in the paper:

      "LSD: A Fast Line Segment Detector with a False Detection Control"
      by Rafael Grompone von Gioi, Jeremie Jakubowicz, Jean-Michel Morel,
      and Gregory Randall, IEEE Transactions on Pattern Analysis and
      Machine Intelligence, vol. 32, no. 4, pp. 722-732, April, 2010.

    and in more details in the CMLA Technical Report:

      "LSD: A Line Segment Detector, Technical Report",
      by Rafael Grompone von Gioi, Jeremie Jakubowicz, Jean-Michel Morel,
      Gregory Randall, CMLA, ENS Cachan, 2010.

    The version implemented here includes some further improvements
    described in the following publication, of which this code is part:

      "LSD: a Line Segment Detector" by Rafael Grompone von Gioi,
      Jeremie Jakubowicz, Jean-Michel Morel, and Gregory Randall,
      Image Processing On Line, 2012. DOI:10.5201/ipol.2012.gjmr-lsd
      http://dx.doi.org/10.5201/ipol.2012.gjmr-lsd

    The module's main function is lsd().

    The source code is contained in two files: lsd.h and lsd.c.

    HISTORY:
    - version 1.6 - nov 2011:
                              - changes in the interface,
                              - max_grad parameter removed,
                              - the factor 11 was added to the number of test
                                to consider the different precision values
                                tested,
                              - a minor bug corrected in the gradient sorting
                                code,
                              - the algorithm now also returns p and log_nfa
                                for each detection,
                              - a minor bug was corrected in the image scaling,
                              - the angle comparison in "isaligned" changed
                                from < to <=,
                              - "eps" variable renamed "log_eps",
                              - "lsd_scale_region" interface was added,
                              - minor changes to comments.
    - version 1.5 - dec 2010: Changes in 'refine', -W option added,
                              and more comments added.
    - version 1.4 - jul 2010: lsd_scale interface added and doxygen doc.
    - version 1.3 - feb 2010: Multiple bug correction and improved code.
    - version 1.2 - dec 2009: First full Ansi C Language version.
    - version 1.1 - sep 2009: Systematic subsampling to scale 0.8 and
                              correction to partially handle "angle problem".
    - version 1.0 - jan 2009: First complete Megawave2 and Ansi C Language
                              version.

    @author rafael grompone von gioi <grompone@gmail.com>
 */
/*----------------------------------------------------------------------------*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <limits.h>
#include <float.h>
#include "lsd.h"

/** ln(10) */
#ifndef M_LN10
#define M_LN10 2.30258509299404568402
#endif /* !M_LN10 */

/** PI */
#ifndef M_PI
#define M_PI   3.14159265358979323846
#endif /* !M_PI */

#ifndef FALSE
#define FALSE 0
#endif /* !FALSE */

#ifndef TRUE
#define TRUE 1
#endif /* !TRUE */

/** Label for pixels with undefined gradient. */
#define NOTDEF -1024.0

/** 3/2 pi */
#define M_3_2_PI 4.71238898038

/** 2 pi */
#define M_2__PI  6.28318530718

/** Label for pixels not used in yet. */
#define NOTUSED 0

/** Label for pixels already used in detection. */
#define USED    1

/*----------------------------------------------------------------------------*/
/** Chained list of coordinates.
 */
struct coorlist
{
  int x,y;
  struct coorlist * next;
};

/*----------------------------------------------------------------------------*/
/** A point (or pixel).
 */
struct point {int x,y;};


/*----------------------------------------------------------------------------*/
/*------------------------- Miscellaneous functions --------------------------*/
/*----------------------------------------------------------------------------*/

/*----------------------------------------------------------------------------*/
/** Fatal error, print a message to standard-error output and exit.
 */
static void error(char * msg)
{
  fprintf(stderr,"LSD Error: %s\n",msg);
  exit(EXIT_FAILURE);
}

/*----------------------------------------------------------------------------*/
/** Doubles relative error factor
 */
#define RELATIVE_ERROR_FACTOR 100.0

/*----------------------------------------------------------------------------*/
/** Compare doubles by relative error.

    The resulting rounding error after floating point computations
    depend on the specific operations done. The same number computed by
    different algorithms could present different rounding errors. For a
    useful comparison, an estimation of the relative rounding error
    should be considered and compared to a factor times EPS. The factor
    should be related to the cumulated rounding error in the chain of
    computation. Here, as a simplification, a fixed factor is used.
 */
static int double_equal(double a, double b)
{
  double abs_diff,aa,bb,abs_max;

  /* trivial case */
  if( a == b ) return TRUE;

  abs_diff = fabs(a-b);
  aa = fabs(a);
  bb = fabs(b);
  abs_max = aa > bb ? aa : bb;

  /* DBL_MIN is the smallest normalized number, thus, the smallest
     number whose relative error is bounded by DBL_EPSILON. For
     smaller numbers, the same quantization steps as for DBL_MIN
     are used. Then, for smaller numbers, a meaningful "relative"
     error should be computed by dividing the difference by DBL_MIN. */
  if( abs_max < DBL_MIN ) abs_max = DBL_MIN;

  /* equal if relative error <= factor x eps */
  return (abs_diff / abs_max) <= (RELATIVE_ERROR_FACTOR * DBL_EPSILON);
}

/*----------------------------------------------------------------------------*/
/** Computes Euclidean distance between point (x1,y1) and point (x2,y2).
 */
static double dist(double x1, double y1, double x2, double y2)
{
  return sqrt( (x2-x1)*(x2-x1) + (y2-y1)*(y2-y1) );
}


/*----------------------------------------------------------------------------*/
/*----------------------- 'list of n-tuple' data type ------------------------*/
/*----------------------------------------------------------------------------*/

/*----------------------------------------------------------------------------*/
/** 'list of n-tuple' data type

    The i-th component of the j-th n-tuple of an n-tuple list 'ntl'
    is accessed with:

      ntl->values[ i + j * ntl->dim ]

    The dimension of the n-tuple (n) is:

      ntl->dim

    The number of n-tuples in the list is:

      ntl->size

    The maximum number of n-tuples that can be stored in the
    list with the allocated memory at a given time is given by:

      ntl->max_size
 */
typedef struct ntuple_list_s
{
  unsigned int size;
  unsigned int max_size;
  unsigned int dim;
  double * values;
} * ntuple_list;

/*----------------------------------------------------------------------------*/
/** Free memory used in n-tuple 'in'.
 */
static void free_ntuple_list(ntuple_list in)
{
  if( in == NULL || in->values == NULL )
    error("free_ntuple_list: invalid n-tuple input.");
  free( (void *) in->values );
  free( (void *) in );
}

/*----------------------------------------------------------------------------*/
/** Create an n-tuple list and allocate memory for one element.
    @param dim the dimension (n) of the n-tuple.
 */
static ntuple_list new_ntuple_list(unsigned int dim)
{
  ntuple_list n_tuple;

  /* check parameters */
  if( dim == 0 ) error("new_ntuple_list: 'dim' must be positive.");

  /* get memory for list structure */
  n_tuple = (ntuple_list) malloc( sizeof(struct ntuple_list_s) );
  if( n_tuple == NULL ) error("not enough memory.");

  /* initialize list */
  n_tuple->size = 0;
  n_tuple->max_size = 1;
  n_tuple->dim = dim;

  /* get memory for tuples */
  n_tuple->values = (double *) malloc( dim*n_tuple->max_size * sizeof(double) );
  if( n_tuple->values == NULL ) error("not enough memory.");

  return n_tuple;
}

/*----------------------------------------------------------------------------*/
/** Enlarge the allocated memory of an n-tuple list.
 */
static void enlarge_ntuple_list(ntuple_list n_tuple)
{
  /* check parameters */
  if( n_tuple == NULL || n_tuple->values == NULL || n_tuple->max_size == 0 )
    error("enlarge_ntuple_list: invalid n-tuple.");

  /* duplicate number of tuples */
  n_tuple->max_size *= 2;

  /* realloc memory */
  n_tuple->values = (double *) realloc( (void *) n_tuple->values,
                      n_tuple->dim * n_tuple->max_size * sizeof(double) );
  if( n_tuple->values == NULL ) error("not enough memory.");
}

/*----------------------------------------------------------------------------*/
/** Add a 7-tuple to an n-tuple list.
 */
static void add_7tuple( ntuple_list out, double v1, double v2, double v3,
                        double v4, double v5, double v6, double v7 )
{
  /* check parameters */
  if( out == NULL ) error("add_7tuple: invalid n-tuple input.");
  if( out->dim != 7 ) error("add_7tuple: the n-tuple must be a 7-tuple.");

  /* if needed, alloc more tuples to 'out' */
  if( out->size == out->max_size ) enlarge_ntuple_list(out);
  if( out->values == NULL ) error("add_7tuple: invalid n-tuple input.");

  /* add new 7-tuple */
  out->values[ out->size * out->dim + 0 ] = v1;
  out->values[ out->size * out->dim + 1 ] = v2;
  out->values[ out->size * out->dim + 2 ] = v3;
  out->values[ out->size * out->dim + 3 ] = v4;
  out->values[ out->size * out->dim + 4 ] = v5;
  out->values[ out->size * out->dim + 5 ] = v6;
  out->values[ out->size * out->dim + 6 ] = v7;

  /* update number of tuples counter */
  out->size++;
}


/*----------------------------------------------------------------------------*/
/*----------------------------- Image Data Types -----------------------------*/
/*----------------------------------------------------------------------------*/

/*----------------------------------------------------------------------------*/
/** char image data type

    The pixel value at (x,y) is accessed by:

      image->data[ x + y * image->xsize ]

    with x and y integer.
 */
typedef struct image_char_s
{
  unsigned char * data;
  unsigned int xsize,ysize;
} * image_char;

/*----------------------------------------------------------------------------*/
/** Free memory used in image_char 'i'.
 */
static void free_image_char(image_char i)
{
  if( i == NULL || i->data == NULL )
    error("free_image_char: invalid input image.");
  free( (void *) i->data );
  free( (void *) i );
}

/*----------------------------------------------------------------------------*/
/** Create a new image_char of size 'xsize' times 'ysize'.
 */
static image_char new_image_char(unsigned int xsize, unsigned int ysize)
{
  image_char image;

  /* check parameters */
  if( xsize == 0 || ysize == 0 ) error("new_image_char: invalid image size.");

  /* get memory */
  image = (image_char) malloc( sizeof(struct image_char_s) );
  if( image == NULL ) error("not enough memory.");
  image->data = (unsigned char *) calloc( (size_t) (xsize*ysize),
                                          sizeof(unsigned char) );
  if( image->data == NULL ) error("not enough memory.");

  /* set image size */
  image->xsize = xsize;
  image->ysize = ysize;

  return image;
}

/*----------------------------------------------------------------------------*/
/** Create a new image_char of size 'xsize' times 'ysize',
    initialized to the value 'fill_value'.
 */
static image_char new_image_char_ini( unsigned int xsize, unsigned int ysize,
                                      unsigned char fill_value )
{
  image_char image = new_image_char(xsize,ysize); /* create image */
  unsigned int N = xsize*ysize;
  unsigned int i;

  /* check parameters */
  if( image == NULL || image->data == NULL )
    error("new_image_char_ini: invalid image.");

  /* initialize */
  for(i=0; i<N; i++) image->data[i] = fill_value;

  return image;
}

/*----------------------------------------------------------------------------*/
/** int image data type

    The pixel value at (x,y) is accessed by:

      image->data[ x + y * image->xsize ]

    with x and y integer.
 */
typedef struct image_int_s
{
  int * data;
  unsigned int xsize,ysize;
} * image_int;

/*----------------------------------------------------------------------------*/
/** Create a new image_int of size 'xsize' times 'ysize'.
 */
static image_int new_image_int(unsigned int xsize, unsigned int ysize)
{
  image_int image;

  /* check parameters */
  if( xsize == 0 || ysize == 0 ) error("new_image_int: invalid image size.");

  /* get memory */
  image = (image_int) malloc( sizeof(struct image_int_s) );
  if( image == NULL ) error("not enough memory.");
  image->data = (int *) calloc( (size_t) (xsize*ysize), sizeof(int) );
  if( image->data == NULL ) error("not enough memory.");

  /* set image size */
  image->xsize = xsize;
  image->ysize = ysize;

  return image;
}

/*----------------------------------------------------------------------------*/
/** Create a new image_int of size 'xsize' times 'ysize',
    initialized to the value 'fill_value'.
 */
static image_int new_image_int_ini( unsigned int xsize, unsigned int ysize,
                                    int fill_value )
{
  image_int image = new_image_int(xsize,ysize); /* create image */
  unsigned int N = xsize*ysize;
  unsigned int i;

  /* initialize */
  for(i=0; i<N; i++) image->data[i] = fill_value;

  return image;
}

/*----------------------------------------------------------------------------*/
/** double image data type

    The pixel value at (x,y) is accessed by:

      image->data[ x + y * image->xsize ]

    with x and y integer.
 */
typedef struct image_double_s
{
  double * data;
  unsigned int xsize,ysize;
} * image_double;

/*----------------------------------------------------------------------------*/
/** Free memory used in image_double 'i'.
 */
static void free_image_double(image_double i)
{
  if( i == NULL || i->data == NULL )
    error("free_image_double: invalid input image.");
  free( (void *) i->data );
  free( (void *) i );
}

/*----------------------------------------------------------------------------*/
/** Create a new image_double of size 'xsize' times 'ysize'.
 */
static image_double new_image_double(unsigned int xsize, unsigned int ysize)
{
  image_double image;

  /* check parameters */
  if( xsize == 0 || ysize == 0 ) error("new_image_double: invalid image size.");

  /* get memory */
  image = (image_double) malloc( sizeof(struct image_double_s) );
  if( image == NULL ) error("not enough memory.");
  image->data = (double *) calloc( (size_t) (xsize*ysize), sizeof(double) );
  if( image->data == NULL ) error("not enough memory.");

  /* set image size */
  image->xsize = xsize;
  image->ysize = ysize;

  return image;
}

/*----------------------------------------------------------------------------*/
/** Create a new image_double of size 'xsize' times 'ysize'
    with the data pointed by 'data'.
 */
static image_double new_image_double_ptr( unsigned int xsize,
                                          unsigned int ysize, double * data )
{
  image_double image;

  /* check parameters */
  if( xsize == 0 || ysize == 0 )
    error("new_image_double_ptr: invalid image size.");
  if( data == NULL ) error("new_image_double_ptr: NULL data pointer.");

  /* get memory */
  image = (image_double) malloc( sizeof(struct image_double_s) );
  if( image == NULL ) error("not enough memory.");

  /* set image */
  image->xsize = xsize;
  image->ysize = ysize;
  image->data = data;

  return image;
}


/*----------------------------------------------------------------------------*/
/*----------------------------- Gaussian filter ------------------------------*/
/*----------------------------------------------------------------------------*/

/*----------------------------------------------------------------------------*/
/** Compute a Gaussian kernel of length 'kernel->dim',
    standard deviation 'sigma', and centered at value 'mean'.

    For example, if mean=0.5, the Gaussian will be centered
    in the middle point between values 'kernel->values[0]'
    and 'kernel->values[1]'.
 */
static void gaussian_kernel(ntuple_list kernel, double sigma, double mean)
{
  double sum = 0.0;
  double val;
  unsigned int i;

  /* check parameters */
  if( kernel == NULL || kernel->values == NULL )
    error("gaussian_kernel: invalid n-tuple 'kernel'.");
  if( sigma <= 0.0 ) error("gaussian_kernel: 'sigma' must be positive.");

  /* compute Gaussian kernel */
  if( kernel->max_size < 1 ) enlarge_ntuple_list(kernel);
  kernel->size = 1;
  for(i=0;i<kernel->dim;i++)
    {
      val = ( (double) i - mean ) / sigma;
      kernel->values[i] = exp( -0.5 * val * val );
      sum += kernel->values[i];
    }

  /* normalization */
  if( sum >= 0.0 ) for(i=0;i<kernel->dim;i++) kernel->values[i] /= sum;
}

/*----------------------------------------------------------------------------*/
/** Scale the input image 'in' by a factor 'scale' by Gaussian sub-sampling.

    For example, scale=0.8 will give a result at 80% of the original size.

    The image is convolved with a Gaussian kernel
    @f[
        G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}
    @f]
    before the sub-sampling to prevent aliasing.

    The standard deviation sigma given by:
    -  sigma = sigma_scale / scale,   if scale <  1.0
    -  sigma = sigma_scale,           if scale >= 1.0

    To be able to sub-sample at non-integer steps, some interpolation
    is needed. In this implementation, the interpolation is done by
    the Gaussian kernel, so both operations (filtering and sampling)
    are done at the same time. The Gaussian kernel is computed
    centered on the coordinates of the required sample. In this way,
    when applied, it gives directly the result of convolving the image
    with the kernel and interpolated to that particular position.

    A fast algorithm is done using the separability of the Gaussian
    kernel. Applying the 2D Gaussian kernel is equivalent to applying
    first a horizontal 1D Gaussian kernel and then a vertical 1D
    Gaussian kernel (or the other way round). The reason is that
    @f[
        G(x,y) = G(x) * G(y)
    @f]
    where
    @f[
        G(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}.
    @f]
    The algorithm first applies a combined Gaussian kernel and sampling
    in the x axis, and then the combined Gaussian kernel and sampling
    in the y axis.
 */
static image_double gaussian_sampler( image_double in, double scale,
                                      double sigma_scale )
{
  image_double aux,out;
  ntuple_list kernel;
  unsigned int N,M,h,n,x,y,i;
  int xc,yc,j,double_x_size,double_y_size;
  double sigma,xx,yy,sum,prec;

  /* check parameters */
  if( in == NULL || in->data == NULL || in->xsize == 0 || in->ysize == 0 )
    error("gaussian_sampler: invalid image.");
  if( scale <= 0.0 ) error("gaussian_sampler: 'scale' must be positive.");
  if( sigma_scale <= 0.0 )
    error("gaussian_sampler: 'sigma_scale' must be positive.");

  /* compute new image size and get memory for images */
  if( in->xsize * scale > (double) UINT_MAX ||
      in->ysize * scale > (double) UINT_MAX )
    error("gaussian_sampler: the output image size exceeds the handled size.");
  N = (unsigned int) ceil( in->xsize * scale );
  M = (unsigned int) ceil( in->ysize * scale );
  aux = new_image_double(N,in->ysize);
  out = new_image_double(N,M);

  /* sigma, kernel size and memory for the kernel */
  sigma = scale < 1.0 ? sigma_scale / scale : sigma_scale;
  /*
     The size of the kernel is selected to guarantee that the
     the first discarded term is at least 10^prec times smaller
     than the central value. For that, h should be larger than x, with
       e^(-x^2/2sigma^2) = 1/10^prec.
     Then,
       x = sigma * sqrt( 2 * prec * ln(10) ).
   */
  prec = 3.0;
  h = (unsigned int) ceil( sigma * sqrt( 2.0 * prec * log(10.0) ) );
  n = 1+2*h; /* kernel size */
  kernel = new_ntuple_list(n);

  /* auxiliary double image size variables */
  double_x_size = (int) (2 * in->xsize);
  double_y_size = (int) (2 * in->ysize);

  /* First subsampling: x axis */
  for(x=0;x<aux->xsize;x++)
    {
      /*
         x   is the coordinate in the new image.
         xx  is the corresponding x-value in the original size image.
         xc  is the integer value, the pixel coordinate of xx.
       */
      xx = (double) x / scale;
      /* coordinate (0.0,0.0) is in the center of pixel (0,0),
         so the pixel with xc=0 get the values of xx from -0.5 to 0.5 */
      xc = (int) floor( xx + 0.5 );
      gaussian_kernel( kernel, sigma, (double) h + xx - (double) xc );
      /* the kernel must be computed for each x because the fine
         offset xx-xc is different in each case */

      for(y=0;y<aux->ysize;y++)
        {
          sum = 0.0;
          for(i=0;i<kernel->dim;i++)
            {
              j = xc - h + i;

              /* symmetry boundary condition */
              while( j < 0 ) j += double_x_size;
              while( j >= double_x_size ) j -= double_x_size;
              if( j >= (int) in->xsize ) j = double_x_size-1-j;

              sum += in->data[ j + y * in->xsize ] * kernel->values[i];
            }
          aux->data[ x + y * aux->xsize ] = sum;
        }
    }

  /* Second subsampling: y axis */
  for(y=0;y<out->ysize;y++)
    {
      /*
         y   is the coordinate in the new image.
         yy  is the corresponding x-value in the original size image.
         yc  is the integer value, the pixel coordinate of xx.
       */
      yy = (double) y / scale;
      /* coordinate (0.0,0.0) is in the center of pixel (0,0),
         so the pixel with yc=0 get the values of yy from -0.5 to 0.5 */
      yc = (int) floor( yy + 0.5 );
      gaussian_kernel( kernel, sigma, (double) h + yy - (double) yc );
      /* the kernel must be computed for each y because the fine
         offset yy-yc is different in each case */

      for(x=0;x<out->xsize;x++)
        {
          sum = 0.0;
          for(i=0;i<kernel->dim;i++)
            {
              j = yc - h + i;

              /* symmetry boundary condition */
              while( j < 0 ) j += double_y_size;
              while( j >= double_y_size ) j -= double_y_size;
              if( j >= (int) in->ysize ) j = double_y_size-1-j;

              sum += aux->data[ x + j * aux->xsize ] * kernel->values[i];
            }
          out->data[ x + y * out->xsize ] = sum;
        }
    }

  /* free memory */
  free_ntuple_list(kernel);
  free_image_double(aux);

  return out;
}


/*----------------------------------------------------------------------------*/
/*--------------------------------- Gradient ---------------------------------*/
/*----------------------------------------------------------------------------*/

/*----------------------------------------------------------------------------*/
/** Computes the direction of the level line of 'in' at each point.

    The result is:
    - an image_double with the angle at each pixel, or NOTDEF if not defined.
    - the image_double 'modgrad' (a pointer is passed as argument)
      with the gradient magnitude at each point.
    - a list of pixels 'list_p' roughly ordered by decreasing
      gradient magnitude. (The order is made by classifying points
      into bins by gradient magnitude. The parameters 'n_bins' and
      'max_grad' specify the number of bins and the gradient modulus
      at the highest bin. The pixels in the list would be in
      decreasing gradient magnitude, up to a precision of the size of
      the bins.)
    - a pointer 'mem_p' to the memory used by 'list_p' to be able to
      free the memory when it is not used anymore.
 */
static image_double ll_angle( image_double in, double threshold,
                              struct coorlist ** list_p, void ** mem_p,
                              image_double * modgrad, unsigned int n_bins )
{
  image_double g;
  unsigned int n,p,x,y,adr,i;
  double com1,com2,gx,gy,norm,norm2;
  /* the rest of the variables are used for pseudo-ordering
     the gradient magnitude values */
  int list_count = 0;
  struct coorlist * list;
  struct coorlist ** range_l_s; /* array of pointers to start of bin list */
  struct coorlist ** range_l_e; /* array of pointers to end of bin list */
  struct coorlist * start;
  struct coorlist * end;
  double max_grad = 0.0;

  /* check parameters */
  if( in == NULL || in->data == NULL || in->xsize == 0 || in->ysize == 0 )
    error("ll_angle: invalid image.");
  if( threshold < 0.0 ) error("ll_angle: 'threshold' must be positive.");
  if( list_p == NULL ) error("ll_angle: NULL pointer 'list_p'.");
  if( mem_p == NULL ) error("ll_angle: NULL pointer 'mem_p'.");
  if( modgrad == NULL ) error("ll_angle: NULL pointer 'modgrad'.");
  if( n_bins == 0 ) error("ll_angle: 'n_bins' must be positive.");

  /* image size shortcuts */
  n = in->ysize;
  p = in->xsize;

  /* allocate output image */
  g = new_image_double(in->xsize,in->ysize);

  /* get memory for the image of gradient modulus */
  *modgrad = new_image_double(in->xsize,in->ysize);

  /* get memory for "ordered" list of pixels */
  list = (struct coorlist *) calloc( (size_t) (n*p), sizeof(struct coorlist) );
  *mem_p = (void *) list;
  range_l_s = (struct coorlist **) calloc( (size_t) n_bins,
                                           sizeof(struct coorlist *) );
  range_l_e = (struct coorlist **) calloc( (size_t) n_bins,
                                           sizeof(struct coorlist *) );
  if( list == NULL || range_l_s == NULL || range_l_e == NULL )
    error("not enough memory.");
  for(i=0;i<n_bins;i++) range_l_s[i] = range_l_e[i] = NULL;

  /* 'undefined' on the down and right boundaries */
  for(x=0;x<p;x++) g->data[(n-1)*p+x] = NOTDEF;
  for(y=0;y<n;y++) g->data[p*y+p-1]   = NOTDEF;

  /* compute gradient on the remaining pixels */
  for(x=0;x<p-1;x++)
    for(y=0;y<n-1;y++)
      {
        adr = y*p+x;

        /*
           Norm 2 computation using 2x2 pixel window:
             A B
             C D
           and
             com1 = D-A,  com2 = B-C.
           Then
             gx = B+D - (A+C)   horizontal difference
             gy = C+D - (A+B)   vertical difference
           com1 and com2 are just to avoid 2 additions.
         */
        com1 = in->data[adr+p+1] - in->data[adr];
        com2 = in->data[adr+1]   - in->data[adr+p];

        gx = com1+com2; /* gradient x component */
        gy = com1-com2; /* gradient y component */
        norm2 = gx*gx+gy*gy;
        norm = sqrt( norm2 / 4.0 ); /* gradient norm */

        (*modgrad)->data[adr] = norm; /* store gradient norm */

        if( norm <= threshold ) /* norm too small, gradient no defined */
          g->data[adr] = NOTDEF; /* gradient angle not defined */
        else
          {
            /* gradient angle computation */
            g->data[adr] = atan2(gx,-gy);

            /* look for the maximum of the gradient */
            if( norm > max_grad ) max_grad = norm;
          }
      }

  /* compute histogram of gradient values */
  for(x=0;x<p-1;x++)
    for(y=0;y<n-1;y++)
      {
        norm = (*modgrad)->data[y*p+x];

        /* store the point in the right bin according to its norm */
        i = (unsigned int) (norm * (double) n_bins / max_grad);
        if( i >= n_bins ) i = n_bins-1;
        if( range_l_e[i] == NULL )
          range_l_s[i] = range_l_e[i] = list+list_count++;
        else
          {
            range_l_e[i]->next = list+list_count;
            range_l_e[i] = list+list_count++;
          }
        range_l_e[i]->x = (int) x;
        range_l_e[i]->y = (int) y;
        range_l_e[i]->next = NULL;
      }

  /* Make the list of pixels (almost) ordered by norm value.
     It starts by the larger bin, so the list starts by the
     pixels with the highest gradient value. Pixels would be ordered
     by norm value, up to a precision given by max_grad/n_bins.
   */
  for(i=n_bins-1; i>0 && range_l_s[i]==NULL; i--);
  start = range_l_s[i];
  end = range_l_e[i];
  if( start != NULL )
    while(i>0)
      {
        --i;
        if( range_l_s[i] != NULL )
          {
            end->next = range_l_s[i];
            end = range_l_e[i];
          }
      }
  *list_p = start;

  /* free memory */
  free( (void *) range_l_s );
  free( (void *) range_l_e );

  return g;
}

/*----------------------------------------------------------------------------*/
/** Is point (x,y) aligned to angle theta, up to precision 'prec'?
 */
static int isaligned( int x, int y, image_double angles, double theta,
                      double prec )
{
  double a;

  /* check parameters */
  if( angles == NULL || angles->data == NULL )
    error("isaligned: invalid image 'angles'.");
  if( x < 0 || y < 0 || x >= (int) angles->xsize || y >= (int) angles->ysize )
    error("isaligned: (x,y) out of the image.");
  if( prec < 0.0 ) error("isaligned: 'prec' must be positive.");

  /* angle at pixel (x,y) */
  a = angles->data[ x + y * angles->xsize ];

  /* pixels whose level-line angle is not defined
     are considered as NON-aligned */
  if( a == NOTDEF ) return FALSE;  /* there is no need to call the function
                                      'double_equal' here because there is
                                      no risk of problems related to the
                                      comparison doubles, we are only
                                      interested in the exact NOTDEF value */

  /* it is assumed that 'theta' and 'a' are in the range [-pi,pi] */
  theta -= a;
  if( theta < 0.0 ) theta = -theta;
  if( theta > M_3_2_PI )
    {
      theta -= M_2__PI;
      if( theta < 0.0 ) theta = -theta;
    }

  return theta <= prec;
}

/*----------------------------------------------------------------------------*/
/** Absolute value angle difference.
 */
static double angle_diff(double a, double b)
{
  a -= b;
  while( a <= -M_PI ) a += M_2__PI;
  while( a >   M_PI ) a -= M_2__PI;
  if( a < 0.0 ) a = -a;
  return a;
}

/*----------------------------------------------------------------------------*/
/** Signed angle difference.
 */
static double angle_diff_signed(double a, double b)
{
  a -= b;
  while( a <= -M_PI ) a += M_2__PI;
  while( a >   M_PI ) a -= M_2__PI;
  return a;
}


/*----------------------------------------------------------------------------*/
/*----------------------------- NFA computation ------------------------------*/
/*----------------------------------------------------------------------------*/

/*----------------------------------------------------------------------------*/
/** Computes the natural logarithm of the absolute value of
    the gamma function of x using the Lanczos approximation.
    See http://www.rskey.org/gamma.htm

    The formula used is
    @f[
      \Gamma(x) = \frac{ \sum_{n=0}^{N} q_n x^n }{ \Pi_{n=0}^{N} (x+n) }
                  (x+5.5)^{x+0.5} e^{-(x+5.5)}
    @f]
    so
    @f[
      \log\Gamma(x) = \log\left( \sum_{n=0}^{N} q_n x^n \right)
                      + (x+0.5) \log(x+5.5) - (x+5.5) - \sum_{n=0}^{N} \log(x+n)
    @f]
    and
      q0 = 75122.6331530,
      q1 = 80916.6278952,
      q2 = 36308.2951477,
      q3 = 8687.24529705,
      q4 = 1168.92649479,
      q5 = 83.8676043424,
      q6 = 2.50662827511.
 */
static double log_gamma_lanczos(double x)
{
  static double q[7] = { 75122.6331530, 80916.6278952, 36308.2951477,
                         8687.24529705, 1168.92649479, 83.8676043424,
                         2.50662827511 };
  double a = (x+0.5) * log(x+5.5) - (x+5.5);
  double b = 0.0;
  int n;

  for(n=0;n<7;n++)
    {
      a -= log( x + (double) n );
      b += q[n] * pow( x, (double) n );
    }
  return a + log(b);
}

/*----------------------------------------------------------------------------*/
/** Computes the natural logarithm of the absolute value of
    the gamma function of x using Windschitl method.
    See http://www.rskey.org/gamma.htm

    The formula used is
    @f[
        \Gamma(x) = \sqrt{\frac{2\pi}{x}} \left( \frac{x}{e}
                    \sqrt{ x\sinh(1/x) + \frac{1}{810x^6} } \right)^x
    @f]
    so
    @f[
        \log\Gamma(x) = 0.5\log(2\pi) + (x-0.5)\log(x) - x
                      + 0.5x\log\left( x\sinh(1/x) + \frac{1}{810x^6} \right).
    @f]
    This formula is a good approximation when x > 15.
 */
static double log_gamma_windschitl(double x)
{
  return 0.918938533204673 + (x-0.5)*log(x) - x
         + 0.5*x*log( x*sinh(1/x) + 1/(810.0*pow(x,6.0)) );
}

/*----------------------------------------------------------------------------*/
/** Computes the natural logarithm of the absolute value of
    the gamma function of x. When x>15 use log_gamma_windschitl(),
    otherwise use log_gamma_lanczos().
 */
#define log_gamma(x) ((x)>15.0?log_gamma_windschitl(x):log_gamma_lanczos(x))

/*----------------------------------------------------------------------------*/
/** Size of the table to store already computed inverse values.
 */
#define TABSIZE 100000

/*----------------------------------------------------------------------------*/
/** Computes -log10(NFA).

    NFA stands for Number of False Alarms:
    @f[
        \mathrm{NFA} = NT \cdot B(n,k,p)
    @f]

    - NT       - number of tests
    - B(n,k,p) - tail of binomial distribution with parameters n,k and p:
    @f[
        B(n,k,p) = \sum_{j=k}^n
                   \left(\begin{array}{c}n\\j\end{array}\right)
                   p^{j} (1-p)^{n-j}
    @f]

    The value -log10(NFA) is equivalent but more intuitive than NFA:
    - -1 corresponds to 10 mean false alarms
    -  0 corresponds to 1 mean false alarm
    -  1 corresponds to 0.1 mean false alarms
    -  2 corresponds to 0.01 mean false alarms
    -  ...

    Used this way, the bigger the value, better the detection,
    and a logarithmic scale is used.

    @param n,k,p binomial parameters.
    @param logNT logarithm of Number of Tests

    The computation is based in the gamma function by the following
    relation:
    @f[
        \left(\begin{array}{c}n\\k\end{array}\right)
        = \frac{ \Gamma(n+1) }{ \Gamma(k+1) \cdot \Gamma(n-k+1) }.
    @f]
    We use efficient algorithms to compute the logarithm of
    the gamma function.

    To make the computation faster, not all the sum is computed, part
    of the terms are neglected based on a bound to the error obtained
    (an error of 10% in the result is accepted).
 */
static double nfa(int n, int k, double p, double logNT)
{
  static double inv[TABSIZE];   /* table to keep computed inverse values */
  double tolerance = 0.1;       /* an error of 10% in the result is accepted */
  double log1term,term,bin_term,mult_term,bin_tail,err,p_term;
  int i;

  /* check parameters */
  if( n<0 || k<0 || k>n || p<=0.0 || p>=1.0 )
    error("nfa: wrong n, k or p values.");

  /* trivial cases */
  if( n==0 || k==0 ) return -logNT;
  if( n==k ) return -logNT - (double) n * log10(p);

  /* probability term */
  p_term = p / (1.0-p);

  /* compute the first term of the series */
  /*
     binomial_tail(n,k,p) = sum_{i=k}^n bincoef(n,i) * p^i * (1-p)^{n-i}
     where bincoef(n,i) are the binomial coefficients.
     But
       bincoef(n,k) = gamma(n+1) / ( gamma(k+1) * gamma(n-k+1) ).
     We use this to compute the first term. Actually the log of it.
   */
  log1term = log_gamma( (double) n + 1.0 ) - log_gamma( (double) k + 1.0 )
           - log_gamma( (double) (n-k) + 1.0 )
           + (double) k * log(p) + (double) (n-k) * log(1.0-p);
  term = exp(log1term);

  /* in some cases no more computations are needed */
  if( double_equal(term,0.0) )              /* the first term is almost zero */
    {
      if( (double) k > (double) n * p )     /* at begin or end of the tail?  */
        return -log1term / M_LN10 - logNT;  /* end: use just the first term  */
      else
        return -logNT;                      /* begin: the tail is roughly 1  */
    }

  /* compute more terms if needed */
  bin_tail = term;
  for(i=k+1;i<=n;i++)
    {
      /*
         As
           term_i = bincoef(n,i) * p^i * (1-p)^(n-i)
         and
           bincoef(n,i)/bincoef(n,i-1) = n-1+1 / i,
         then,
           term_i / term_i-1 = (n-i+1)/i * p/(1-p)
         and
           term_i = term_i-1 * (n-i+1)/i * p/(1-p).
         1/i is stored in a table as they are computed,
         because divisions are expensive.
         p/(1-p) is computed only once and stored in 'p_term'.
       */
      bin_term = (double) (n-i+1) * ( i<TABSIZE ?
                   ( inv[i]!=0.0 ? inv[i] : ( inv[i] = 1.0 / (double) i ) ) :
                   1.0 / (double) i );

      mult_term = bin_term * p_term;
      term *= mult_term;
      bin_tail += term;
      if(bin_term<1.0)
        {
          /* When bin_term<1 then mult_term_j<mult_term_i for j>i.
             Then, the error on the binomial tail when truncated at
             the i term can be bounded by a geometric series of form
             term_i * sum mult_term_i^j.                            */
          err = term * ( ( 1.0 - pow( mult_term, (double) (n-i+1) ) ) /
                         (1.0-mult_term) - 1.0 );

          /* One wants an error at most of tolerance*final_result, or:
             tolerance * abs(-log10(bin_tail)-logNT).
             Now, the error that can be accepted on bin_tail is
             given by tolerance*final_result divided by the derivative
             of -log10(x) when x=bin_tail. that is:
             tolerance * abs(-log10(bin_tail)-logNT) / (1/bin_tail)
             Finally, we truncate the tail if the error is less than:
             tolerance * abs(-log10(bin_tail)-logNT) * bin_tail        */
          if( err < tolerance * fabs(-log10(bin_tail)-logNT) * bin_tail ) break;
        }
    }
  return -log10(bin_tail) - logNT;
}


/*----------------------------------------------------------------------------*/
/*--------------------------- Rectangle structure ----------------------------*/
/*----------------------------------------------------------------------------*/

/*----------------------------------------------------------------------------*/
/** Rectangle structure: line segment with width.
 */
struct rect
{
  double x1,y1,x2,y2;  /* first and second point of the line segment */
  double width;        /* rectangle width */
  double x,y;          /* center of the rectangle */
  double theta;        /* angle */
  double dx,dy;        /* (dx,dy) is vector oriented as the line segment */
  double prec;         /* tolerance angle */
  double p;            /* probability of a point with angle within 'prec' */
};

/*----------------------------------------------------------------------------*/
/** Copy one rectangle structure to another.
 */
static void rect_copy(struct rect * in, struct rect * out)
{
  /* check parameters */
  if( in == NULL || out == NULL ) error("rect_copy: invalid 'in' or 'out'.");

  /* copy values */
  out->x1 = in->x1;
  out->y1 = in->y1;
  out->x2 = in->x2;
  out->y2 = in->y2;
  out->width = in->width;
  out->x = in->x;
  out->y = in->y;
  out->theta = in->theta;
  out->dx = in->dx;
  out->dy = in->dy;
  out->prec = in->prec;
  out->p = in->p;
}

/*----------------------------------------------------------------------------*/
/** Rectangle points iterator.

    The integer coordinates of pixels inside a rectangle are
    iteratively explored. This structure keep track of the process and
    functions ri_ini(), ri_inc(), ri_end(), and ri_del() are used in
    the process. An example of how to use the iterator is as follows:
    \code

      struct rect * rec = XXX; // some rectangle
      rect_iter * i;
      for( i=ri_ini(rec); !ri_end(i); ri_inc(i) )
        {
          // your code, using 'i->x' and 'i->y' as coordinates
        }
      ri_del(i); // delete iterator

    \endcode
    The pixels are explored 'column' by 'column', where we call
    'column' a set of pixels with the same x value that are inside the
    rectangle. The following is an schematic representation of a
    rectangle, the 'column' being explored is marked by colons, and
    the current pixel being explored is 'x,y'.
    \verbatim

              vx[1],vy[1]
                 *   *
                *       *
               *           *
              *               ye
             *                :  *
        vx[0],vy[0]           :     *
               *              :        *
                  *          x,y          *
                     *        :              *
                        *     :            vx[2],vy[2]
                           *  :                *
        y                     ys              *
        ^                        *           *
        |                           *       *
        |                              *   *
        +---> x                      vx[3],vy[3]

    \endverbatim
    The first 'column' to be explored is the one with the smaller x
    value. Each 'column' is explored starting from the pixel of the
    'column' (inside the rectangle) with the smallest y value.

    The four corners of the rectangle are stored in order that rotates
    around the corners at the arrays 'vx[]' and 'vy[]'. The first
    point is always the one with smaller x value.

    'x' and 'y' are the coordinates of the pixel being explored. 'ys'
    and 'ye' are the start and end values of the current column being
    explored. So, 'ys' < 'ye'.
 */
typedef struct
{
  double vx[4];  /* rectangle's corner X coordinates in circular order */
  double vy[4];  /* rectangle's corner Y coordinates in circular order */
  double ys,ye;  /* start and end Y values of current 'column' */
  int x,y;       /* coordinates of currently explored pixel */
} rect_iter;

/*----------------------------------------------------------------------------*/
/** Interpolate y value corresponding to 'x' value given, in
    the line 'x1,y1' to 'x2,y2'; if 'x1=x2' return the smaller
    of 'y1' and 'y2'.

    The following restrictions are required:
    - x1 <= x2
    - x1 <= x
    - x  <= x2
 */
static double inter_low(double x, double x1, double y1, double x2, double y2)
{
  /* check parameters */
  if( x1 > x2 || x < x1 || x > x2 )
    error("inter_low: unsuitable input, 'x1>x2' or 'x<x1' or 'x>x2'.");

  /* interpolation */
  if( double_equal(x1,x2) && y1<y2 ) return y1;
  if( double_equal(x1,x2) && y1>y2 ) return y2;
  return y1 + (x-x1) * (y2-y1) / (x2-x1);
}

/*----------------------------------------------------------------------------*/
/** Interpolate y value corresponding to 'x' value given, in
    the line 'x1,y1' to 'x2,y2'; if 'x1=x2' return the larger
    of 'y1' and 'y2'.

    The following restrictions are required:
    - x1 <= x2
    - x1 <= x
    - x  <= x2
 */
static double inter_hi(double x, double x1, double y1, double x2, double y2)
{
  /* check parameters */
  if( x1 > x2 || x < x1 || x > x2 )
    error("inter_hi: unsuitable input, 'x1>x2' or 'x<x1' or 'x>x2'.");

  /* interpolation */
  if( double_equal(x1,x2) && y1<y2 ) return y2;
  if( double_equal(x1,x2) && y1>y2 ) return y1;
  return y1 + (x-x1) * (y2-y1) / (x2-x1);
}

/*----------------------------------------------------------------------------*/
/** Free memory used by a rectangle iterator.
 */
static void ri_del(rect_iter * iter)
{
  if( iter == NULL ) error("ri_del: NULL iterator.");
  free( (void *) iter );
}

/*----------------------------------------------------------------------------*/
/** Check if the iterator finished the full iteration.

    See details in \ref rect_iter
 */
static int ri_end(rect_iter * i)
{
  /* check input */
  if( i == NULL ) error("ri_end: NULL iterator.");

  /* if the current x value is larger than the largest
     x value in the rectangle (vx[2]), we know the full
     exploration of the rectangle is finished. */
  return (double)(i->x) > i->vx[2];
}

/*----------------------------------------------------------------------------*/
/** Increment a rectangle iterator.

    See details in \ref rect_iter
 */
static void ri_inc(rect_iter * i)
{
  /* check input */
  if( i == NULL ) error("ri_inc: NULL iterator.");

  /* if not at end of exploration,
     increase y value for next pixel in the 'column' */
  if( !ri_end(i) ) i->y++;

  /* if the end of the current 'column' is reached,
     and it is not the end of exploration,
     advance to the next 'column' */
  while( (double) (i->y) > i->ye && !ri_end(i) )
    {
      /* increase x, next 'column' */
      i->x++;

      /* if end of exploration, return */
      if( ri_end(i) ) return;

      /* update lower y limit (start) for the new 'column'.

         We need to interpolate the y value that corresponds to the
         lower side of the rectangle. The first thing is to decide if
         the corresponding side is

           vx[0],vy[0] to vx[3],vy[3] or
           vx[3],vy[3] to vx[2],vy[2]

         Then, the side is interpolated for the x value of the
         'column'. But, if the side is vertical (as it could happen if
         the rectangle is vertical and we are dealing with the first
         or last 'columns') then we pick the lower value of the side
         by using 'inter_low'.
       */
      if( (double) i->x < i->vx[3] )
        i->ys = inter_low((double)i->x,i->vx[0],i->vy[0],i->vx[3],i->vy[3]);
      else
        i->ys = inter_low((double)i->x,i->vx[3],i->vy[3],i->vx[2],i->vy[2]);

      /* update upper y limit (end) for the new 'column'.

         We need to interpolate the y value that corresponds to the
         upper side of the rectangle. The first thing is to decide if
         the corresponding side is

           vx[0],vy[0] to vx[1],vy[1] or
           vx[1],vy[1] to vx[2],vy[2]

         Then, the side is interpolated for the x value of the
         'column'. But, if the side is vertical (as it could happen if
         the rectangle is vertical and we are dealing with the first
         or last 'columns') then we pick the lower value of the side
         by using 'inter_low'.
       */
      if( (double)i->x < i->vx[1] )
        i->ye = inter_hi((double)i->x,i->vx[0],i->vy[0],i->vx[1],i->vy[1]);
      else
        i->ye = inter_hi((double)i->x,i->vx[1],i->vy[1],i->vx[2],i->vy[2]);

      /* new y */
      i->y = (int) ceil(i->ys);
    }
}

/*----------------------------------------------------------------------------*/
/** Create and initialize a rectangle iterator.

    See details in \ref rect_iter
 */
static rect_iter * ri_ini(struct rect * r)
{
  double vx[4],vy[4];
  int n,offset;
  rect_iter * i;

  /* check parameters */
  if( r == NULL ) error("ri_ini: invalid rectangle.");

  /* get memory */
  i = (rect_iter *) malloc(sizeof(rect_iter));
  if( i == NULL ) error("ri_ini: Not enough memory.");

  /* build list of rectangle corners ordered
     in a circular way around the rectangle */
  vx[0] = r->x1 - r->dy * r->width / 2.0;
  vy[0] = r->y1 + r->dx * r->width / 2.0;
  vx[1] = r->x2 - r->dy * r->width / 2.0;
  vy[1] = r->y2 + r->dx * r->width / 2.0;
  vx[2] = r->x2 + r->dy * r->width / 2.0;
  vy[2] = r->y2 - r->dx * r->width / 2.0;
  vx[3] = r->x1 + r->dy * r->width / 2.0;
  vy[3] = r->y1 - r->dx * r->width / 2.0;

  /* compute rotation of index of corners needed so that the first
     point has the smaller x.

     if one side is vertical, thus two corners have the same smaller x
     value, the one with the largest y value is selected as the first.
   */
  if( r->x1 < r->x2 && r->y1 <= r->y2 ) offset = 0;
  else if( r->x1 >= r->x2 && r->y1 < r->y2 ) offset = 1;
  else if( r->x1 > r->x2 && r->y1 >= r->y2 ) offset = 2;
  else offset = 3;

  /* apply rotation of index. */
  for(n=0; n<4; n++)
    {
      i->vx[n] = vx[(offset+n)%4];
      i->vy[n] = vy[(offset+n)%4];
    }

  /* Set an initial condition.

     The values are set to values that will cause 'ri_inc' (that will
     be called immediately) to initialize correctly the first 'column'
     and compute the limits 'ys' and 'ye'.

     'y' is set to the integer value of vy[0], the starting corner.

     'ys' and 'ye' are set to very small values, so 'ri_inc' will
     notice that it needs to start a new 'column'.

     The smallest integer coordinate inside of the rectangle is
     'ceil(vx[0])'. The current 'x' value is set to that value minus
     one, so 'ri_inc' (that will increase x by one) will advance to
     the first 'column'.
   */
  i->x = (int) ceil(i->vx[0]) - 1;
  i->y = (int) ceil(i->vy[0]);
  i->ys = i->ye = -DBL_MAX;

  /* advance to the first pixel */
  ri_inc(i);

  return i;
}

/*----------------------------------------------------------------------------*/
/** Compute a rectangle's NFA value.
 */
static double rect_nfa(struct rect * rec, image_double angles, double logNT)
{
  rect_iter * i;
  int pts = 0;
  int alg = 0;

  /* check parameters */
  if( rec == NULL ) error("rect_nfa: invalid rectangle.");
  if( angles == NULL ) error("rect_nfa: invalid 'angles'.");

  /* compute the total number of pixels and of aligned points in 'rec' */
  for(i=ri_ini(rec); !ri_end(i); ri_inc(i)) /* rectangle iterator */
    if( i->x >= 0 && i->y >= 0 &&
        i->x < (int) angles->xsize && i->y < (int) angles->ysize )
      {
        ++pts; /* total number of pixels counter */
        if( isaligned(i->x, i->y, angles, rec->theta, rec->prec) )
          ++alg; /* aligned points counter */
      }
  ri_del(i); /* delete iterator */

  return nfa(pts,alg,rec->p,logNT); /* compute NFA value */
}


/*----------------------------------------------------------------------------*/
/*---------------------------------- Regions ---------------------------------*/
/*----------------------------------------------------------------------------*/

/*----------------------------------------------------------------------------*/
/** Compute region's angle as the principal inertia axis of the region.

    The following is the region inertia matrix A:
    @f[

        A = \left(\begin{array}{cc}
                                    Ixx & Ixy \\
                                    Ixy & Iyy \\
             \end{array}\right)

    @f]
    where

      Ixx =   sum_i G(i).(y_i - cx)^2

      Iyy =   sum_i G(i).(x_i - cy)^2

      Ixy = - sum_i G(i).(x_i - cx).(y_i - cy)

    and
    - G(i) is the gradient norm at pixel i, used as pixel's weight.
    - x_i and y_i are the coordinates of pixel i.
    - cx and cy are the coordinates of the center of th region.

    lambda1 and lambda2 are the eigenvalues of matrix A,
    with lambda1 >= lambda2. They are found by solving the
    characteristic polynomial:

      det( lambda I - A) = 0

    that gives:

      lambda1 = ( Ixx + Iyy + sqrt( (Ixx-Iyy)^2 + 4.0*Ixy*Ixy) ) / 2

      lambda2 = ( Ixx + Iyy - sqrt( (Ixx-Iyy)^2 + 4.0*Ixy*Ixy) ) / 2

    To get the line segment direction we want to get the angle the
    eigenvector associated to the smallest eigenvalue. We have
    to solve for a,b in:

      a.Ixx + b.Ixy = a.lambda2

      a.Ixy + b.Iyy = b.lambda2

    We want the angle theta = atan(b/a). It can be computed with
    any of the two equations:

      theta = atan( (lambda2-Ixx) / Ixy )

    or

      theta = atan( Ixy / (lambda2-Iyy) )

    When |Ixx| > |Iyy| we use the first, otherwise the second (just to
    get better numeric precision).
 */
static double get_theta( struct point * reg, int reg_size, double x, double y,
                         image_double modgrad, double reg_angle, double prec )
{
  double lambda,theta,weight;
  double Ixx = 0.0;
  double Iyy = 0.0;
  double Ixy = 0.0;
  int i;

  /* check parameters */
  if( reg == NULL ) error("get_theta: invalid region.");
  if( reg_size <= 1 ) error("get_theta: region size <= 1.");
  if( modgrad == NULL || modgrad->data == NULL )
    error("get_theta: invalid 'modgrad'.");
  if( prec < 0.0 ) error("get_theta: 'prec' must be positive.");

  /* compute inertia matrix */
  for(i=0; i<reg_size; i++)
    {
      weight = modgrad->data[ reg[i].x + reg[i].y * modgrad->xsize ];
      Ixx += ( (double) reg[i].y - y ) * ( (double) reg[i].y - y ) * weight;
      Iyy += ( (double) reg[i].x - x ) * ( (double) reg[i].x - x ) * weight;
      Ixy -= ( (double) reg[i].x - x ) * ( (double) reg[i].y - y ) * weight;
    }
  if( double_equal(Ixx,0.0) && double_equal(Iyy,0.0) && double_equal(Ixy,0.0) )
    error("get_theta: null inertia matrix.");

  /* compute smallest eigenvalue */
  lambda = 0.5 * ( Ixx + Iyy - sqrt( (Ixx-Iyy)*(Ixx-Iyy) + 4.0*Ixy*Ixy ) );

  /* compute angle */
  theta = fabs(Ixx)>fabs(Iyy) ? atan2(lambda-Ixx,Ixy) : atan2(Ixy,lambda-Iyy);

  /* The previous procedure doesn't cares about orientation,
     so it could be wrong by 180 degrees. Here is corrected if necessary. */
  if( angle_diff(theta,reg_angle) > prec ) theta += M_PI;

  return theta;
}

/*----------------------------------------------------------------------------*/
/** Computes a rectangle that covers a region of points.
 */
static void region2rect( struct point * reg, int reg_size,
                         image_double modgrad, double reg_angle,
                         double prec, double p, struct rect * rec )
{
  double x,y,dx,dy,l,w,theta,weight,sum,l_min,l_max,w_min,w_max;
  int i;

  /* check parameters */
  if( reg == NULL ) error("region2rect: invalid region.");
  if( reg_size <= 1 ) error("region2rect: region size <= 1.");
  if( modgrad == NULL || modgrad->data == NULL )
    error("region2rect: invalid image 'modgrad'.");
  if( rec == NULL ) error("region2rect: invalid 'rec'.");

  /* center of the region:

     It is computed as the weighted sum of the coordinates
     of all the pixels in the region. The norm of the gradient
     is used as the weight of a pixel. The sum is as follows:
       cx = \sum_i G(i).x_i
       cy = \sum_i G(i).y_i
     where G(i) is the norm of the gradient of pixel i
     and x_i,y_i are its coordinates.
   */
  x = y = sum = 0.0;
  for(i=0; i<reg_size; i++)
    {
      weight = modgrad->data[ reg[i].x + reg[i].y * modgrad->xsize ];
      x += (double) reg[i].x * weight;
      y += (double) reg[i].y * weight;
      sum += weight;
    }
  if( sum <= 0.0 ) error("region2rect: weights sum equal to zero.");
  x /= sum;
  y /= sum;

  /* theta */
  theta = get_theta(reg,reg_size,x,y,modgrad,reg_angle,prec);

  /* length and width:

     'l' and 'w' are computed as the distance from the center of the
     region to pixel i, projected along the rectangle axis (dx,dy) and
     to the orthogonal axis (-dy,dx), respectively.

     The length of the rectangle goes from l_min to l_max, where l_min
     and l_max are the minimum and maximum values of l in the region.
     Analogously, the width is selected from w_min to w_max, where
     w_min and w_max are the minimum and maximum of w for the pixels
     in the region.
   */
  dx = cos(theta);
  dy = sin(theta);
  l_min = l_max = w_min = w_max = 0.0;
  for(i=0; i<reg_size; i++)
    {
      l =  ( (double) reg[i].x - x) * dx + ( (double) reg[i].y - y) * dy;
      w = -( (double) reg[i].x - x) * dy + ( (double) reg[i].y - y) * dx;

      if( l > l_max ) l_max = l;
      if( l < l_min ) l_min = l;
      if( w > w_max ) w_max = w;
      if( w < w_min ) w_min = w;
    }

  /* store values */
  rec->x1 = x + l_min * dx;
  rec->y1 = y + l_min * dy;
  rec->x2 = x + l_max * dx;
  rec->y2 = y + l_max * dy;
  rec->width = w_max - w_min;
  rec->x = x;
  rec->y = y;
  rec->theta = theta;
  rec->dx = dx;
  rec->dy = dy;
  rec->prec = prec;
  rec->p = p;

  /* we impose a minimal width of one pixel

     A sharp horizontal or vertical step would produce a perfectly
     horizontal or vertical region. The width computed would be
     zero. But that corresponds to a one pixels width transition in
     the image.
   */
  if( rec->width < 1.0 ) rec->width = 1.0;
}

/*----------------------------------------------------------------------------*/
/** Build a region of pixels that share the same angle, up to a
    tolerance 'prec', starting at point (x,y).
 */
static void region_grow( int x, int y, image_double angles, struct point * reg,
                         int * reg_size, double * reg_angle, image_char used,
                         double prec )
{
  double sumdx,sumdy;
  int xx,yy,i;

  /* check parameters */
  if( x < 0 || y < 0 || x >= (int) angles->xsize || y >= (int) angles->ysize )
    error("region_grow: (x,y) out of the image.");
  if( angles == NULL || angles->data == NULL )
    error("region_grow: invalid image 'angles'.");
  if( reg == NULL ) error("region_grow: invalid 'reg'.");
  if( reg_size == NULL ) error("region_grow: invalid pointer 'reg_size'.");
  if( reg_angle == NULL ) error("region_grow: invalid pointer 'reg_angle'.");
  if( used == NULL || used->data == NULL )
    error("region_grow: invalid image 'used'.");

  /* first point of the region */
  *reg_size = 1;
  reg[0].x = x;
  reg[0].y = y;
  *reg_angle = angles->data[x+y*angles->xsize];  /* region's angle */
  sumdx = cos(*reg_angle);
  sumdy = sin(*reg_angle);
  used->data[x+y*used->xsize] = USED;

  /* try neighbors as new region points */
  for(i=0; i<*reg_size; i++)
    for(xx=reg[i].x-1; xx<=reg[i].x+1; xx++)
      for(yy=reg[i].y-1; yy<=reg[i].y+1; yy++)
        if( xx>=0 && yy>=0 && xx<(int)used->xsize && yy<(int)used->ysize &&
            used->data[xx+yy*used->xsize] != USED &&
            isaligned(xx,yy,angles,*reg_angle,prec) )
          {
            /* add point */
            used->data[xx+yy*used->xsize] = USED;
            reg[*reg_size].x = xx;
            reg[*reg_size].y = yy;
            ++(*reg_size);

            /* update region's angle */
            sumdx += cos( angles->data[xx+yy*angles->xsize] );
            sumdy += sin( angles->data[xx+yy*angles->xsize] );
            *reg_angle = atan2(sumdy,sumdx);
          }
}

/*----------------------------------------------------------------------------*/
/** Try some rectangles variations to improve NFA value. Only if the
    rectangle is not meaningful (i.e., log_nfa <= log_eps).
 */
static double rect_improve( struct rect * rec, image_double angles,
                            double logNT, double log_eps )
{
  struct rect r;
  double log_nfa,log_nfa_new;
  double delta = 0.5;
  double delta_2 = delta / 2.0;
  int n;

  log_nfa = rect_nfa(rec,angles,logNT);

  if( log_nfa > log_eps ) return log_nfa;

  /* try finer precisions */
  rect_copy(rec,&r);
  for(n=0; n<5; n++)
    {
      r.p /= 2.0;
      r.prec = r.p * M_PI;
      log_nfa_new = rect_nfa(&r,angles,logNT);
      if( log_nfa_new > log_nfa )
        {
          log_nfa = log_nfa_new;
          rect_copy(&r,rec);
        }
    }

  if( log_nfa > log_eps ) return log_nfa;

  /* try to reduce width */
  rect_copy(rec,&r);
  for(n=0; n<5; n++)
    {
      if( (r.width - delta) >= 0.5 )
        {
          r.width -= delta;
          log_nfa_new = rect_nfa(&r,angles,logNT);
          if( log_nfa_new > log_nfa )
            {
              rect_copy(&r,rec);
              log_nfa = log_nfa_new;
            }
        }
    }

  if( log_nfa > log_eps ) return log_nfa;

  /* try to reduce one side of the rectangle */
  rect_copy(rec,&r);
  for(n=0; n<5; n++)
    {
      if( (r.width - delta) >= 0.5 )
        {
          r.x1 += -r.dy * delta_2;
          r.y1 +=  r.dx * delta_2;
          r.x2 += -r.dy * delta_2;
          r.y2 +=  r.dx * delta_2;
          r.width -= delta;
          log_nfa_new = rect_nfa(&r,angles,logNT);
          if( log_nfa_new > log_nfa )
            {
              rect_copy(&r,rec);
              log_nfa = log_nfa_new;
            }
        }
    }

  if( log_nfa > log_eps ) return log_nfa;

  /* try to reduce the other side of the rectangle */
  rect_copy(rec,&r);
  for(n=0; n<5; n++)
    {
      if( (r.width - delta) >= 0.5 )
        {
          r.x1 -= -r.dy * delta_2;
          r.y1 -=  r.dx * delta_2;
          r.x2 -= -r.dy * delta_2;
          r.y2 -=  r.dx * delta_2;
          r.width -= delta;
          log_nfa_new = rect_nfa(&r,angles,logNT);
          if( log_nfa_new > log_nfa )
            {
              rect_copy(&r,rec);
              log_nfa = log_nfa_new;
            }
        }
    }

  if( log_nfa > log_eps ) return log_nfa;

  /* try even finer precisions */
  rect_copy(rec,&r);
  for(n=0; n<5; n++)
    {
      r.p /= 2.0;
      r.prec = r.p * M_PI;
      log_nfa_new = rect_nfa(&r,angles,logNT);
      if( log_nfa_new > log_nfa )
        {
          log_nfa = log_nfa_new;
          rect_copy(&r,rec);
        }
    }

  return log_nfa;
}

/*----------------------------------------------------------------------------*/
/** Reduce the region size, by elimination the points far from the
    starting point, until that leads to rectangle with the right
    density of region points or to discard the region if too small.
 */
static int reduce_region_radius( struct point * reg, int * reg_size,
                                 image_double modgrad, double reg_angle,
                                 double prec, double p, struct rect * rec,
                                 image_char used, image_double angles,
                                 double density_th )
{
  double density,rad1,rad2,rad,xc,yc;
  int i;

  /* check parameters */
  if( reg == NULL ) error("reduce_region_radius: invalid pointer 'reg'.");
  if( reg_size == NULL )
    error("reduce_region_radius: invalid pointer 'reg_size'.");
  if( prec < 0.0 ) error("reduce_region_radius: 'prec' must be positive.");
  if( rec == NULL ) error("reduce_region_radius: invalid pointer 'rec'.");
  if( used == NULL || used->data == NULL )
    error("reduce_region_radius: invalid image 'used'.");
  if( angles == NULL || angles->data == NULL )
    error("reduce_region_radius: invalid image 'angles'.");

  /* compute region points density */
  density = (double) *reg_size /
                         ( dist(rec->x1,rec->y1,rec->x2,rec->y2) * rec->width );

  /* if the density criterion is satisfied there is nothing to do */
  if( density >= density_th ) return TRUE;

  /* compute region's radius */
  xc = (double) reg[0].x;
  yc = (double) reg[0].y;
  rad1 = dist( xc, yc, rec->x1, rec->y1 );
  rad2 = dist( xc, yc, rec->x2, rec->y2 );
  rad = rad1 > rad2 ? rad1 : rad2;

  /* while the density criterion is not satisfied, remove farther pixels */
  while( density < density_th )
    {
      rad *= 0.75; /* reduce region's radius to 75% of its value */

      /* remove points from the region and update 'used' map */
      for(i=0; i<*reg_size; i++)
        if( dist( xc, yc, (double) reg[i].x, (double) reg[i].y ) > rad )
          {
            /* point not kept, mark it as NOTUSED */
            used->data[ reg[i].x + reg[i].y * used->xsize ] = NOTUSED;
            /* remove point from the region */
            reg[i].x = reg[*reg_size-1].x; /* if i==*reg_size-1 copy itself */
            reg[i].y = reg[*reg_size-1].y;
            --(*reg_size);
            --i; /* to avoid skipping one point */
          }

      /* reject if the region is too small.
         2 is the minimal region size for 'region2rect' to work. */
      if( *reg_size < 2 ) return FALSE;

      /* re-compute rectangle */
      region2rect(reg,*reg_size,modgrad,reg_angle,prec,p,rec);

      /* re-compute region points density */
      density = (double) *reg_size /
                         ( dist(rec->x1,rec->y1,rec->x2,rec->y2) * rec->width );
    }

  /* if this point is reached, the density criterion is satisfied */
  return TRUE;
}

/*----------------------------------------------------------------------------*/
/** Refine a rectangle.

    For that, an estimation of the angle tolerance is performed by the
    standard deviation of the angle at points near the region's
    starting point. Then, a new region is grown starting from the same
    point, but using the estimated angle tolerance. If this fails to
    produce a rectangle with the right density of region points,
    'reduce_region_radius' is called to try to satisfy this condition.
 */
static int refine( struct point * reg, int * reg_size, image_double modgrad,
                   double reg_angle, double prec, double p, struct rect * rec,
                   image_char used, image_double angles, double density_th )
{
  double angle,ang_d,mean_angle,tau,density,xc,yc,ang_c,sum,s_sum;
  int i,n;

  /* check parameters */
  if( reg == NULL ) error("refine: invalid pointer 'reg'.");
  if( reg_size == NULL ) error("refine: invalid pointer 'reg_size'.");
  if( prec < 0.0 ) error("refine: 'prec' must be positive.");
  if( rec == NULL ) error("refine: invalid pointer 'rec'.");
  if( used == NULL || used->data == NULL )
    error("refine: invalid image 'used'.");
  if( angles == NULL || angles->data == NULL )
    error("refine: invalid image 'angles'.");

  /* compute region points density */
  density = (double) *reg_size /
                         ( dist(rec->x1,rec->y1,rec->x2,rec->y2) * rec->width );

  /* if the density criterion is satisfied there is nothing to do */
  if( density >= density_th ) return TRUE;

  /*------ First try: reduce angle tolerance ------*/

  /* compute the new mean angle and tolerance */
  xc = (double) reg[0].x;
  yc = (double) reg[0].y;
  ang_c = angles->data[ reg[0].x + reg[0].y * angles->xsize ];
  sum = s_sum = 0.0;
  n = 0;
  for(i=0; i<*reg_size; i++)
    {
      used->data[ reg[i].x + reg[i].y * used->xsize ] = NOTUSED;
      if( dist( xc, yc, (double) reg[i].x, (double) reg[i].y ) < rec->width )
        {
          angle = angles->data[ reg[i].x + reg[i].y * angles->xsize ];
          ang_d = angle_diff_signed(angle,ang_c);
          sum += ang_d;
          s_sum += ang_d * ang_d;
          ++n;
        }
    }
  mean_angle = sum / (double) n;
  tau = 2.0 * sqrt( (s_sum - 2.0 * mean_angle * sum) / (double) n
                         + mean_angle*mean_angle ); /* 2 * standard deviation */

  /* find a new region from the same starting point and new angle tolerance */
  region_grow(reg[0].x,reg[0].y,angles,reg,reg_size,&reg_angle,used,tau);

  /* if the region is too small, reject */
  if( *reg_size < 2 ) return FALSE;

  /* re-compute rectangle */
  region2rect(reg,*reg_size,modgrad,reg_angle,prec,p,rec);

  /* re-compute region points density */
  density = (double) *reg_size /
                      ( dist(rec->x1,rec->y1,rec->x2,rec->y2) * rec->width );

  /*------ Second try: reduce region radius ------*/
  if( density < density_th )
    return reduce_region_radius( reg, reg_size, modgrad, reg_angle, prec, p,
                                 rec, used, angles, density_th );

  /* if this point is reached, the density criterion is satisfied */
  return TRUE;
}


/*----------------------------------------------------------------------------*/
/*-------------------------- Line Segment Detector ---------------------------*/
/*----------------------------------------------------------------------------*/

/*----------------------------------------------------------------------------*/
/** LSD full interface.
 */
double * LineSegmentDetection( int * n_out,
                               double * img, int X, int Y,
                               double scale, double sigma_scale, double quant,
                               double ang_th, double log_eps, double density_th,
                               int n_bins,
                               int ** reg_img, int * reg_x, int * reg_y )
{
  image_double image;
  ntuple_list out = new_ntuple_list(7);
  double * return_value;
  image_double scaled_image,angles,modgrad;
  image_char used;
  image_int region = NULL;
  struct coorlist * list_p;
  void * mem_p;
  struct rect rec;
  struct point * reg;
  int reg_size,min_reg_size,i;
  unsigned int xsize,ysize;
  double rho,reg_angle,prec,p,log_nfa,logNT;
  int ls_count = 0;                   /* line segments are numbered 1,2,3,... */


  /* check parameters */
  if( img == NULL || X <= 0 || Y <= 0 ) error("invalid image input.");
  if( scale <= 0.0 ) error("'scale' value must be positive.");
  if( sigma_scale <= 0.0 ) error("'sigma_scale' value must be positive.");
  if( quant < 0.0 ) error("'quant' value must be positive.");
  if( ang_th <= 0.0 || ang_th >= 180.0 )
    error("'ang_th' value must be in the range (0,180).");
  if( density_th < 0.0 || density_th > 1.0 )
    error("'density_th' value must be in the range [0,1].");
  if( n_bins <= 0 ) error("'n_bins' value must be positive.");


  /* angle tolerance */
  prec = M_PI * ang_th / 180.0;
  p = ang_th / 180.0;
  rho = quant / sin(prec); /* gradient magnitude threshold */


  /* load and scale image (if necessary) and compute angle at each pixel */
  image = new_image_double_ptr( (unsigned int) X, (unsigned int) Y, img );
  if( scale != 1.0 )
    {
      scaled_image = gaussian_sampler( image, scale, sigma_scale );
      angles = ll_angle( scaled_image, rho, &list_p, &mem_p,
                         &modgrad, (unsigned int) n_bins );
      free_image_double(scaled_image);
    }
  else
    angles = ll_angle( image, rho, &list_p, &mem_p, &modgrad,
                       (unsigned int) n_bins );
  xsize = angles->xsize;
  ysize = angles->ysize;

  /* Number of Tests - NT

     The theoretical number of tests is Np.(XY)^(5/2)
     where X and Y are number of columns and rows of the image.
     Np corresponds to the number of angle precisions considered.
     As the procedure 'rect_improve' tests 5 times to halve the
     angle precision, and 5 more times after improving other factors,
     11 different precision values are potentially tested. Thus,
     the number of tests is
       11 * (X*Y)^(5/2)
     whose logarithm value is
       log10(11) + 5/2 * (log10(X) + log10(Y)).
  */
  logNT = 5.0 * ( log10( (double) xsize ) + log10( (double) ysize ) ) / 2.0
          + log10(11.0);
  min_reg_size = (int) (-logNT/log10(p)); /* minimal number of points in region
                                             that can give a meaningful event */


  /* initialize some structures */
  if( reg_img != NULL && reg_x != NULL && reg_y != NULL ) /* save region data */
    region = new_image_int_ini(angles->xsize,angles->ysize,0);
  used = new_image_char_ini(xsize,ysize,NOTUSED);
  reg = (struct point *) calloc( (size_t) (xsize*ysize), sizeof(struct point) );
  if( reg == NULL ) error("not enough memory!");


  /* search for line segments */
  for(; list_p != NULL; list_p = list_p->next )
    if( used->data[ list_p->x + list_p->y * used->xsize ] == NOTUSED &&
        angles->data[ list_p->x + list_p->y * angles->xsize ] != NOTDEF )
       /* there is no risk of double comparison problems here
          because we are only interested in the exact NOTDEF value */
      {
        /* find the region of connected point and ~equal angle */
        region_grow( list_p->x, list_p->y, angles, reg, &reg_size,
                     &reg_angle, used, prec );

        /* reject small regions */
        if( reg_size < min_reg_size ) continue;

        /* construct rectangular approximation for the region */
        region2rect(reg,reg_size,modgrad,reg_angle,prec,p,&rec);

        /* Check if the rectangle exceeds the minimal density of
           region points. If not, try to improve the region.
           The rectangle will be rejected if the final one does
           not fulfill the minimal density condition.
           This is an addition to the original LSD algorithm published in
           "LSD: A Fast Line Segment Detector with a False Detection Control"
           by R. Grompone von Gioi, J. Jakubowicz, J.M. Morel, and G. Randall.
           The original algorithm is obtained with density_th = 0.0.
         */
        if( !refine( reg, &reg_size, modgrad, reg_angle,
                     prec, p, &rec, used, angles, density_th ) ) continue;

        /* compute NFA value */
        log_nfa = rect_improve(&rec,angles,logNT,log_eps);
        if( log_nfa <= log_eps ) continue;

        /* A New Line Segment was found! */
        ++ls_count;  /* increase line segment counter */

        /*
           The gradient was computed with a 2x2 mask, its value corresponds to
           points with an offset of (0.5,0.5), that should be added to output.
           The coordinates origin is at the center of pixel (0,0).
         */
        rec.x1 += 0.5; rec.y1 += 0.5;
        rec.x2 += 0.5; rec.y2 += 0.5;

        /* scale the result values if a subsampling was performed */
        if( scale != 1.0 )
          {
            rec.x1 /= scale; rec.y1 /= scale;
            rec.x2 /= scale; rec.y2 /= scale;
            rec.width /= scale;
          }

        /* add line segment found to output */
        add_7tuple( out, rec.x1, rec.y1, rec.x2, rec.y2,
                         rec.width, rec.p, log_nfa );

        /* add region number to 'region' image if needed */
        if( region != NULL )
          for(i=0; i<reg_size; i++)
            region->data[ reg[i].x + reg[i].y * region->xsize ] = ls_count;
      }


  /* free memory */
  free( (void *) image );   /* only the double_image structure should be freed,
                               the data pointer was provided to this functions
                               and should not be destroyed.                 */
  free_image_double(angles);
  free_image_double(modgrad);
  free_image_char(used);
  free( (void *) reg );
  free( (void *) mem_p );

  /* return the result */
  if( reg_img != NULL && reg_x != NULL && reg_y != NULL )
    {
      if( region == NULL ) error("'region' should be a valid image.");
      *reg_img = region->data;
      if( region->xsize > (unsigned int) INT_MAX ||
          region->xsize > (unsigned int) INT_MAX )
        error("region image to big to fit in INT sizes.");
      *reg_x = (int) (region->xsize);
      *reg_y = (int) (region->ysize);

      /* free the 'region' structure.
         we cannot use the function 'free_image_int' because we need to keep
         the memory with the image data to be returned by this function. */
      free( (void *) region );
    }
  if( out->size > (unsigned int) INT_MAX )
    error("too many detections to fit in an INT.");
  *n_out = (int) (out->size);

  return_value = out->values;
  free( (void *) out );  /* only the 'ntuple_list' structure must be freed,
                            but the 'values' pointer must be keep to return
                            as a result. */

  return return_value;
}

/*----------------------------------------------------------------------------*/
/** LSD Simple Interface with Scale and Region output.
 */
double * lsd_scale_region( int * n_out,
                           double * img, int X, int Y, double scale,
                           int ** reg_img, int * reg_x, int * reg_y )
{
  /* LSD parameters */
  double sigma_scale = 0.6; /* Sigma for Gaussian filter is computed as
                                sigma = sigma_scale/scale.                    */
  double quant = 2.0;       /* Bound to the quantization error on the
                                gradient norm.                                */
  double ang_th = 22.5;     /* Gradient angle tolerance in degrees.           */
  double log_eps = 0.0;     /* Detection threshold: -log10(NFA) > log_eps     */
  double density_th = 0.7;  /* Minimal density of region points in rectangle. */
  int n_bins = 1024;        /* Number of bins in pseudo-ordering of gradient
                               modulus.                                       */

  return LineSegmentDetection( n_out, img, X, Y, scale, sigma_scale, quant,
                               ang_th, log_eps, density_th, n_bins,
                               reg_img, reg_x, reg_y );
}

/*----------------------------------------------------------------------------*/
/** LSD Simple Interface with Scale.
 */
double * lsd_scale(int * n_out, double * img, int X, int Y, double scale)
{
  return lsd_scale_region(n_out,img,X,Y,scale,NULL,NULL,NULL);
}

/*----------------------------------------------------------------------------*/
/** LSD Simple Interface.
 */
double * lsd(int * n_out, double * img, int X, int Y)
{
  /* LSD parameters */
  double scale = 0.8;       /* Scale the image by Gaussian filter to 'scale'. */

  return lsd_scale(n_out,img,X,Y,scale);
}
/*----------------------------------------------------------------------------*/