File: BSplineData.inl

package info (click to toggle)
colmap 3.5-1
  • links: PTS
  • area: main
  • in suites: buster
  • size: 20,564 kB
  • sloc: ansic: 170,595; cpp: 95,339; python: 2,335; makefile: 183; sh: 51
file content (474 lines) | stat: -rwxr-xr-x 21,862 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
/*
Copyright (c) 2006, Michael Kazhdan and Matthew Bolitho
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. Redistributions in binary form must reproduce
the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution. 

Neither the name of the Johns Hopkins University nor the names of its contributors
may be used to endorse or promote products derived from this software without specific
prior written permission. 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES 
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE  GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
*/

///////////////////////////
// BSplineEvaluationData //
///////////////////////////
template< int Degree >
double BSplineEvaluationData< Degree >::Value( int depth , int off , double s , bool dirichlet , bool derivative )
{
	if( s<0 || s>1 ) return 0.;

	int dim = Dimension(depth) , res = 1<<depth;
	if( off<0 || off>=dim ) return 0;

	BSplineComponents components = BSplineComponents( depth , off , dirichlet );

	// [NOTE] This is an ugly way to ensure that when s=1 we evaluate using a B-Spline component within the valid range.
	int ii = std::max< int >( 0 , std::min< int >( res-1 , (int)floor( s * res ) ) ) - off;

	if( ii<SupportStart || ii>SupportEnd ) return 0;
	if( derivative ) return components[ii-SupportStart].derivative()(s);
	else             return components[ii-SupportStart](s);
}
template< int Degree >
void BSplineEvaluationData< Degree >::SetCenterEvaluator( typename CenterEvaluator::Evaluator& evaluator , int depth , bool dirichlet )
{
	evaluator._depth = depth;
	int dim = BSplineEvaluationData< Degree >::Dimension( depth ) , res = 1<<depth;
	for( int i=0 ; i<CenterEvaluator::Size ; i++ ) for( int j=SupportStart ; j<=SupportEnd ; j++ )
	{
		int ii = ( i<=CenterEvaluator::Start ? i : ( dim - CenterEvaluator::Size + i ) );
		double s = 0.5 + ii + j;
		for( int d1=0 ; d1<2 ; d1++ ) evaluator._ccValues[d1][i][j-SupportStart] = Value( depth , ii , s/res , dirichlet , d1!=0 );
	}
}
template< int Degree >
void BSplineEvaluationData< Degree >::SetChildCenterEvaluator( typename CenterEvaluator::ChildEvaluator& evaluator , int parentDepth , bool dirichlet )
{
	evaluator._parentDepth = parentDepth;
	int dim = BSplineEvaluationData< Degree >::Dimension( parentDepth ) , res = 1<<(parentDepth+1);
	for( int i=0 ; i<CenterEvaluator::Size ; i++ ) for( int j=ChildSupportStart ; j<=ChildSupportEnd ; j++ )
	{
		int ii = ( i<=CenterEvaluator::Start ? i : ( dim - CenterEvaluator::Size + i ) );
		double s = 0.5 + 2*ii + j;
		for( int d1=0 ; d1<2 ; d1++ ) evaluator._pcValues[d1][i][j-ChildSupportStart] = Value( parentDepth , ii , s/res , dirichlet , d1!=0 );
	}
}
template< int Degree >
double BSplineEvaluationData< Degree >::CenterEvaluator::Evaluator::value( int fIdx , int cIdx , bool d ) const
{
	int dd = cIdx-fIdx , res = 1<<(_depth) , dim = Dimension(_depth);
	if( cIdx<0 || fIdx<0 || cIdx>=res || fIdx>=dim || dd<SupportStart || dd>SupportEnd ) return 0;
	return _ccValues[d?1:0][ CenterEvaluator::Index( _depth , fIdx ) ][dd-SupportStart];
}
template< int Degree >
double BSplineEvaluationData< Degree >::CenterEvaluator::ChildEvaluator::value( int fIdx , int cIdx , bool d ) const
{
	int dd = cIdx-2*fIdx , res = 1<<(_parentDepth+1) , dim = Dimension(_parentDepth);
	if( cIdx<0 || fIdx<0 || cIdx>=res || fIdx>=dim || dd<ChildSupportStart || dd>ChildSupportEnd ) return 0;
	return _pcValues[d?1:0][ CenterEvaluator::Index( _parentDepth , fIdx ) ][dd-ChildSupportStart];
}
template< int Degree >
void BSplineEvaluationData< Degree >::SetCornerEvaluator( typename CornerEvaluator::Evaluator& evaluator , int depth , bool dirichlet )
{
	evaluator._depth = depth;
	int dim = BSplineEvaluationData< Degree >::Dimension( depth ) , res = 1<<depth;
	for( int i=0 ; i<CornerEvaluator::Size ; i++ ) for( int j=CornerStart ; j<=CornerEnd ; j++ )
	{
		int ii = ( i<=CornerEvaluator::Start ? i : ( dim - CornerEvaluator::Size + i ) );
		double s = ii + j;
		for( int d1=0 ; d1<2 ; d1++ ) evaluator._ccValues[d1][i][j-CornerStart] = Value( depth , ii , s/res , dirichlet , d1!=0 );
	}
}
template< int Degree >
void BSplineEvaluationData< Degree >::SetChildCornerEvaluator( typename CornerEvaluator::ChildEvaluator& evaluator , int parentDepth , bool dirichlet )
{
	evaluator._parentDepth = parentDepth;
	int dim = BSplineEvaluationData< Degree >::Dimension( parentDepth ) ,  res = 1<<(parentDepth+1);
	for( int i=0 ; i<CornerEvaluator::Size ; i++ ) for( int j=ChildCornerStart ; j<=ChildCornerEnd ; j++ )
	{
		int ii = ( i<=CornerEvaluator::Start ? i : ( dim - CornerEvaluator::Size + i ) );
		double s = 2*ii + j;
		for( int d1=0 ; d1<2 ; d1++ ) evaluator._pcValues[d1][i][j-ChildCornerStart] = Value( parentDepth , ii , s/res , dirichlet , d1!=0 );
	}
}
template< int Degree >
void BSplineEvaluationData< Degree >::SetUpSampleEvaluator( UpSampleEvaluator& evaluator , int lowDepth , bool dirichlet )
{
	evaluator._lowDepth = lowDepth;
	int lowDim = Dimension(lowDepth);
	for( int i=0 ; i<UpSampleEvaluator::Size ; i++ )
	{
		int ii = ( i<=UpSampleEvaluator::Start ? i : ( lowDim - UpSampleEvaluator::Size + i ) );
		BSplineUpSamplingCoefficients b( lowDepth , ii , dirichlet );
		for( int j=0 ; j<UpSampleSize ; j++ ) evaluator._pcValues[i][j] = b[j];
	}
}
template< int Degree >
double BSplineEvaluationData< Degree >::CornerEvaluator::Evaluator::value( int fIdx , int cIdx , bool d ) const
{
	int dd = cIdx-fIdx , res = ( 1<<_depth ) + 1 , dim = Dimension(_depth);
	if( cIdx<0 || fIdx<0 || cIdx>=res || fIdx>=dim || dd<CornerStart || dd>CornerEnd ) return 0;
	return _ccValues[d?1:0][ CornerEvaluator::Index( _depth , fIdx ) ][dd-CornerStart];
}
template< int Degree >
double BSplineEvaluationData< Degree >::CornerEvaluator::ChildEvaluator::value( int fIdx , int cIdx , bool d ) const
{
	int dd = cIdx-2*fIdx , res = ( 1<<(_parentDepth+1) ) + 1 , dim = Dimension(_parentDepth);
	if( cIdx<0 || fIdx<0 || cIdx>=res || fIdx>=dim || dd<ChildCornerStart || dd>ChildCornerEnd ) return 0;
	return _pcValues[d?1:0][ CornerEvaluator::Index( _parentDepth , fIdx ) ][dd-ChildCornerStart];
}
template< int Degree >
double BSplineEvaluationData< Degree >::UpSampleEvaluator::value( int pIdx , int cIdx ) const
{
	int dd = cIdx-2*pIdx , pDim = Dimension( _lowDepth ) , cDim = Dimension( _lowDepth+1 );
	if( cIdx<0 || pIdx<0 || cIdx>=cDim || pIdx>=pDim || dd<UpSampleStart || dd>UpSampleEnd ) return 0;
	return _pcValues[ UpSampleEvaluator::Index( _lowDepth , pIdx ) ][dd-UpSampleStart];
}

//////////////////////////////////////////////
// BSplineEvaluationData::BSplineComponents //
//////////////////////////////////////////////
template< int Degree >
BSplineEvaluationData< Degree >::BSplineComponents::BSplineComponents( int depth , int offset , bool dirichlet )
{
	int res = 1<<depth;
	BSplineElements< Degree > elements( res , offset , dirichlet );

	// The first index is the position, the second is the element type
	Polynomial< Degree > components[Degree+1][Degree+1];
	// Generate the elements that can appear in the base function corresponding to the base function at (depth,offset) = (0,0)
	for( int d=0 ; d<=Degree ; d++ ) for( int dd=0 ; dd<=Degree ; dd++ ) components[d][dd] = Polynomial< Degree >::BSplineComponent( Degree-dd ).shift( -( (Degree+1)/2 ) + d );

	// Now adjust to the desired depth and offset
	double width = 1. / res;
	for( int d=0 ; d<=Degree ; d++ ) for( int dd=0 ; dd<=Degree ; dd++ ) components[d][dd] = components[d][dd].scale( width ).shift( width*offset );

	// Now write in the polynomials
	for( int d=0 ; d<=Degree ; d++ )
	{
		int idx = offset + SupportStart + d;
		_polys[d] = Polynomial< Degree >();

		if( idx>=0 && idx<res ) for( int dd=0 ; dd<=Degree ; dd++ ) _polys[d] += components[d][dd] * ( ( double )( elements[idx][dd] ) ) / elements.denominator;
	}
}

//////////////////////////////////////////////////////////
// BSplineEvaluationData::BSplineUpSamplingCoefficients //
//////////////////////////////////////////////////////////
template< int Degree >
BSplineEvaluationData< Degree >::BSplineUpSamplingCoefficients::BSplineUpSamplingCoefficients( int depth , int offset , bool dirichlet )
{
	// [ 1/8 1/2 3/4 1/2 1/8]
	// [ 1 , 1 ] ->  [ 3/4 , 1/2 , 1/8 ] + [ 1/8 , 1/2 , 3/4 ] = [ 7/8 , 1 , 7/8 ]
	int dim = Dimension(depth) , _dim = Dimension(depth+1);
	bool reflect;
	offset = BSplineData< Degree >::RemapOffset( depth , offset , reflect );
	int multiplier = ( dirichlet && reflect ) ? -1 : 1;
	bool useReflected = Inset || ( offset % ( dim-1 ) );
	int b[ UpSampleSize ];
	Polynomial< Degree+1 >::BinomialCoefficients( b );

	// Clear the values
	memset( _coefficients , 0 , sizeof(int) * UpSampleSize );

	// Get the array of coefficients, relative to the origin
	int* coefficients = _coefficients - ( 2*offset + UpSampleStart );
	for( int i=UpSampleStart ; i<=UpSampleEnd ; i++ )
	{
		int _offset = 2*offset+i;
		_offset = BSplineData< Degree >::RemapOffset( depth+1 , _offset , reflect );
		if( useReflected || !reflect )
		{
			int _multiplier = multiplier * ( ( dirichlet && reflect ) ? -1 : 1 );
			coefficients[ _offset ] += b[ i-UpSampleStart ] * _multiplier;
		}
		// If we are not inset and we are at the boundary, use the reflection as well
		if( !Inset && ( offset % (dim-1) ) && !( _offset % (_dim-1) ) )
		{
			_offset = BSplineData< Degree >::RemapOffset( depth+1 , _offset , reflect );
			int _multiplier = multiplier * ( ( dirichlet && reflect ) ? -1 : 1 );
			if( dirichlet ) _multiplier *= -1;
			coefficients[ _offset ] += b[ i-UpSampleStart ] * _multiplier;
		}
	}
}

////////////////////////////
// BSplineIntegrationData //
////////////////////////////
template< int Degree1 , int Degree2 >
double BSplineIntegrationData< Degree1 , Degree2 >::Dot( int depth1 ,  int off1 , bool dirichlet1 , bool d1 , int depth2 , int off2 , bool dirichlet2 , bool d2 )
{
	const int _Degree1 = (d1 ? (Degree1-1) : Degree1) , _Degree2 = (d2 ? (Degree2-1) : Degree2);
	int sums[ Degree1+1 ][ Degree2+1 ];

	int depth = std::max< int >( depth1 , depth2 );

	BSplineElements< Degree1 > b1( 1<<depth1 , off1 , dirichlet1 );
	BSplineElements< Degree2 > b2( 1<<depth2 , off2 , dirichlet2 );

	{
		BSplineElements< Degree1 > b;
		while( depth1<depth ) b=b1 , b.upSample( b1 ) , depth1++;
	}
	{
		BSplineElements< Degree2 > b;
		while( depth2<depth ) b=b2 , b.upSample( b2 ) , depth2++;
	}

	BSplineElements< Degree1-1 > db1;
	BSplineElements< Degree2-1 > db2;
	b1.differentiate( db1 ) , b2.differentiate( db2 );

	int start1=-1 , end1=-1 , start2=-1 , end2=-1;
	for( int i=0 ; i<int( b1.size() ) ; i++ )
	{
		for( int j=0 ; j<=Degree1 ; j++ )
		{
			if( b1[i][j] && start1==-1 ) start1 = i;
			if( b1[i][j] ) end1 = i+1;
		}
		for( int j=0 ; j<=Degree2 ; j++ )
		{
			if( b2[i][j] && start2==-1 ) start2 = i;
			if( b2[i][j] ) end2 = i+1;
		}
	}
	if( start1==end1 || start2==end2 || start1>=end2 || start2>=end1 ) return 0.;
	int start = std::max< int >( start1 , start2 ) , end = std::min< int >( end1 , end2 );
	memset( sums , 0 , sizeof( sums ) );

	// Iterate over the support
	for( int i=start ; i<end ; i++ )
		// Iterate over all pairs of elements within a node
		for( int j=0 ; j<=_Degree1 ; j++ ) for( int k=0 ; k<=_Degree2 ; k++ )
			// Accumulate the product of the coefficients
			sums[j][k] += ( d1 ?  db1[i][j] : b1[i][j] ) * ( d2 ? db2[i][k] : b2[i][k] );

	double _dot = 0;
	if( d1 && d2 )
	{
		double integrals[ Degree1 ][ Degree2 ];
		SetBSplineElementIntegrals< Degree1-1 , Degree2-1 >( integrals );
		for( int j=0 ; j<=_Degree1 ; j++ ) for( int k=0 ; k<=_Degree2 ; k++ ) _dot += integrals[j][k] * sums[j][k];
	}
	else if( d1 )
	{
		double integrals[ Degree1 ][ Degree2+1 ];
		SetBSplineElementIntegrals< Degree1-1 , Degree2 >( integrals );
		for( int j=0 ; j<=_Degree1 ; j++ ) for( int k=0 ; k<=_Degree2 ; k++ ) _dot += integrals[j][k] * sums[j][k];
	}
	else if( d2 )
	{
		double integrals[ Degree1+1 ][ Degree2 ];
		SetBSplineElementIntegrals< Degree1 , Degree2-1 >( integrals );
		for( int j=0 ; j<=_Degree1 ; j++ ) for( int k=0 ; k<=_Degree2 ; k++ ) _dot += integrals[j][k] * sums[j][k];
	}
	else
	{
		double integrals[ Degree1+1 ][ Degree2+1 ];
		SetBSplineElementIntegrals< Degree1 , Degree2 >( integrals );
		for( int j=0 ; j<=_Degree1 ; j++ ) for( int k=0 ; k<=_Degree2 ; k++ ) _dot += integrals[j][k] * sums[j][k];
	}

	_dot /= b1.denominator;
	_dot /= b2.denominator;
	if     ( d1 && d2 ) return _dot * (1<<depth);
	else if( d1 || d2 ) return _dot;
	else                return _dot / (1<<depth);
}
template< int Degree1 , int Degree2 >
void BSplineIntegrationData< Degree1, Degree2 >::SetIntegrator( typename FunctionIntegrator::Integrator& integrator , int depth , bool dirichlet1 , bool dirichlet2 )
{
	integrator._depth = depth;
	int dim = BSplineEvaluationData< Degree2 >::Dimension( depth );
	for( int i=0 ; i<FunctionIntegrator::Size ; i++ ) for( int j=OverlapStart ; j<=OverlapEnd ; j++ )
	{
		int ii = ( i<=FunctionIntegrator::Start ? i : ( dim - FunctionIntegrator::Size + i ) );
		for( int d1=0 ; d1<2 ; d1++ ) for( int d2=0 ; d2<2 ; d2++ ) integrator._ccIntegrals[d1][d2][i][j-OverlapStart] = Dot( depth , ii , dirichlet1 , d1!=0 , depth , ii+j , dirichlet2 , d2!=0 );
	}
}
template< int Degree1 , int Degree2 >
void BSplineIntegrationData< Degree1, Degree2 >::SetChildIntegrator( typename FunctionIntegrator::ChildIntegrator& integrator , int parentDepth , bool dirichlet1 , bool dirichlet2 )
{
	integrator._parentDepth = parentDepth;
	int dim = BSplineEvaluationData< Degree2 >::Dimension( parentDepth );
	for( int i=0 ; i<FunctionIntegrator::Size ; i++ ) for( int j=ChildOverlapStart ; j<=ChildOverlapEnd ; j++ )
	{
		int ii = ( i<=FunctionIntegrator::Start ? i : ( dim - FunctionIntegrator::Size + i ) );
		for( int d1=0 ; d1<2 ; d1++ ) for( int d2=0 ; d2<2 ; d2++ ) integrator._pcIntegrals[d1][d2][i][j-ChildOverlapStart] = Dot( parentDepth , ii , dirichlet1 , d1!=0 , parentDepth+1 , 2*ii+j , dirichlet2 , d2!=0 );
	}
}
template< int Degree1 , int Degree2 >
double BSplineIntegrationData< Degree1 , Degree2 >::FunctionIntegrator::Integrator::dot( int off1 , int off2 , bool d1 , bool d2 ) const
{
	int d = off2-off1 , dim1 = BSplineEvaluationData< Degree1 >::Dimension( _depth ) , dim2 = BSplineEvaluationData< Degree2 >::Dimension( _depth );
	if( off1<0 || off2<0 || off1>=dim1 || off2>=dim2 || d<OverlapStart || d>OverlapEnd ) return 0;
	return _ccIntegrals[d1?1:0][d2?1:0][ FunctionIntegrator::Index( _depth , off1 ) ][d-OverlapStart];
}
template< int Degree1 , int Degree2 >
double BSplineIntegrationData< Degree1 , Degree2 >::FunctionIntegrator::ChildIntegrator::dot( int off1 , int off2 , bool d1 , bool d2 ) const
{
	int d = off2-2*off1 , dim1 = BSplineEvaluationData< Degree1 >::Dimension( _parentDepth ) , dim2 = BSplineEvaluationData< Degree2 >::Dimension( _parentDepth+1 );
	if( off1<0 || off2<0 || off1>=dim1 || off2>=dim2 || d<ChildOverlapStart || d>ChildOverlapEnd ) return 0;
	return _pcIntegrals[d1?1:0][d2?1:0][ FunctionIntegrator::Index( _parentDepth , off1 ) ][d-ChildOverlapStart];
}
/////////////////
// BSplineData //
/////////////////
#define MODULO( A , B ) ( (A)<0 ? ( (B)-((-(A))%(B)) ) % (B) : (A) % (B) )
template< int Degree >
int BSplineData< Degree >::RemapOffset( int depth , int offset , bool& reflect )
{
	const int I = ( Degree&1 ) ? 0 : 1;
	int dim = Dimension( depth );
	offset = MODULO( offset , 2*(dim-1+I) );
	reflect = offset>=dim;
	if( reflect ) return 2*(dim-1+I) - (offset+I);
	else          return offset;
}
#undef MODULO

template< int Degree > BSplineData< Degree >::BSplineData( void ){ functionCount = sampleCount = 0; }


template< int Degree >
void BSplineData< Degree >::set( int maxDepth , bool dirichlet )
{
	_dirichlet = dirichlet;

	depth = maxDepth;
	functionCount = TotalFunctionCount( depth );
	sampleCount = TotalSampleCount( depth );
	baseBSplines = NewPointer< typename BSplineEvaluationData< Degree >::BSplineComponents >( functionCount );

	for( size_t i=0 ; i<functionCount ; i++ )
	{
		int d , off;
		FactorFunctionIndex( (int)i , d , off );
		baseBSplines[i] = typename BSplineEvaluationData< Degree >::BSplineComponents( d , off , _dirichlet );
	}
}

/////////////////////
// BSplineElements //
/////////////////////
template< int Degree >
BSplineElements< Degree >::BSplineElements( int res , int offset , bool dirichlet )
{
	denominator = 1;
	std::vector< BSplineElementCoefficients< Degree > >::resize( res , BSplineElementCoefficients< Degree >() );

	// If we have primal dirichlet constraints, the boundary functions are necessarily zero
	if( _Primal && dirichlet && !(offset%res) ) return;

	// Construct the B-Spline
	for( int i=0 ; i<=Degree ; i++ )
	{
		int idx = -_Off + offset + i;
		if( idx>=0 && idx<res ) (*this)[idx][i] = 1;
	}
	// Fold in the periodic instances (which cancels the negation)
	_addPeriodic< true >( _RotateLeft ( offset , res ) , false ) , _addPeriodic< false >( _RotateRight( offset , res ) , false );

	// Recursively fold in the boundaries
	if( _Primal && !(offset%res) ) return;

	// Fold in the reflected instance (which may require negation)
	_addPeriodic< true >( _ReflectLeft( offset , res ) , dirichlet ) , _addPeriodic< false >( _ReflectRight( offset , res ) , dirichlet );
}
template< int Degree > int BSplineElements< Degree >::_ReflectLeft ( int offset , int res ){ return (Degree&1) ?      -offset :      -1-offset; }
template< int Degree > int BSplineElements< Degree >::_ReflectRight( int offset , int res ){ return (Degree&1) ? 2*res-offset : 2*res-1-offset; }
template< int Degree > int BSplineElements< Degree >::_RotateLeft  ( int offset , int res ){ return offset-2*res; }
template< int Degree > int BSplineElements< Degree >::_RotateRight ( int offset , int res ){ return offset+2*res; }

template< int Degree >
template< bool Left >
void BSplineElements< Degree >::_addPeriodic( int offset , bool negate )
{
	int res = int( std::vector< BSplineElementCoefficients< Degree > >::size() );
	bool set = false;
	// Add in the corresponding B-spline elements (possibly negated)
	for( int i=0 ; i<=Degree ; i++ )
	{
		int idx = -_Off + offset + i;
		if( idx>=0 && idx<res ) (*this)[idx][i] += negate ? -1 : 1 , set = true;
	}
	// If there is a change for additional overlap, give it a go
	if( set ) _addPeriodic< Left >( Left ? _RotateLeft( offset , res ) : _RotateRight( offset , res ) , negate );
}
template< int Degree >
void BSplineElements< Degree >::upSample( BSplineElements< Degree >& high ) const
{
	int bCoefficients[ BSplineEvaluationData< Degree >::UpSampleSize ];
	Polynomial< Degree+1 >::BinomialCoefficients( bCoefficients );

	high.resize( std::vector< BSplineElementCoefficients< Degree > >::size()*2 );
	high.assign( high.size() , BSplineElementCoefficients< Degree >() );
	// [NOTE] We have flipped the order of the B-spline elements
	for( int i=0 ; i<int(std::vector< BSplineElementCoefficients< Degree > >::size()) ; i++ ) for( int j=0 ; j<=Degree ; j++ )
	{
		// At index I , B-spline element J corresponds to a B-spline centered at:
		//		I - SupportStart - J
		int idx = i - BSplineEvaluationData< Degree >::SupportStart - j;
		for( int k=BSplineEvaluationData< Degree >::UpSampleStart ; k<=BSplineEvaluationData< Degree >::UpSampleEnd ; k++ )
		{
			// Index idx at the coarser resolution gets up-sampled into indices:
			//		2*idx + [UpSampleStart,UpSampleEnd]
			// at the finer resolution
			int _idx = 2*idx + k;
			// Compute the index of the B-spline element relative to 2*i and 2*i+1
			int _j1 = -_idx + 2*i - BSplineEvaluationData< Degree >::SupportStart , _j2 = -_idx + 2*i + 1 - BSplineEvaluationData< Degree >::SupportStart;
			if( _j1>=0 && _j1<=Degree ) high[2*i+0][_j1] += (*this)[i][j] * bCoefficients[k-BSplineEvaluationData< Degree >::UpSampleStart];
			if( _j2>=0 && _j2<=Degree ) high[2*i+1][_j2] += (*this)[i][j] * bCoefficients[k-BSplineEvaluationData< Degree >::UpSampleStart];
		}
	}
	high.denominator = denominator<<Degree;
}

template< int Degree >
void BSplineElements< Degree >::differentiate( BSplineElements< Degree-1 >& d ) const
{
	d.resize( std::vector< BSplineElementCoefficients< Degree > >::size() );
	d.assign( d.size()  , BSplineElementCoefficients< Degree-1 >() );
	for( int i=0 ; i<int(std::vector< BSplineElementCoefficients< Degree > >::size()) ; i++ ) for( int j=0 ; j<=Degree ; j++ )
	{
		if( j-1>=0 )   d[i][j-1] -= (*this)[i][j];
		if( j<Degree ) d[i][j  ] += (*this)[i][j];
	}
	d.denominator = denominator;
}

// If we were really good, we would implement this integral table to store
// rational values to improve precision...
template< int Degree1 , int Degree2 >
void SetBSplineElementIntegrals( double integrals[Degree1+1][Degree2+1] )
{
	for( int i=0 ; i<=Degree1 ; i++ )
	{
		Polynomial< Degree1 > p1 = Polynomial< Degree1 >::BSplineComponent( Degree1-i );
		for( int j=0 ; j<=Degree2 ; j++ )
		{
			Polynomial< Degree2 > p2 = Polynomial< Degree2 >::BSplineComponent( Degree2-j );
			integrals[i][j] = ( p1 * p2 ).integral( 0 , 1 );
		}
	}
}