1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
/*
Copyright (c) 2006, Michael Kazhdan and Matthew Bolitho
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. Redistributions in binary form must reproduce
the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.
Neither the name of the Johns Hopkins University nor the names of its contributors
may be used to endorse or promote products derived from this software without specific
prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
*/
///////////////////////////
// BSplineEvaluationData //
///////////////////////////
template< int Degree >
double BSplineEvaluationData< Degree >::Value( int depth , int off , double s , bool dirichlet , bool derivative )
{
if( s<0 || s>1 ) return 0.;
int dim = Dimension(depth) , res = 1<<depth;
if( off<0 || off>=dim ) return 0;
BSplineComponents components = BSplineComponents( depth , off , dirichlet );
// [NOTE] This is an ugly way to ensure that when s=1 we evaluate using a B-Spline component within the valid range.
int ii = std::max< int >( 0 , std::min< int >( res-1 , (int)floor( s * res ) ) ) - off;
if( ii<SupportStart || ii>SupportEnd ) return 0;
if( derivative ) return components[ii-SupportStart].derivative()(s);
else return components[ii-SupportStart](s);
}
template< int Degree >
void BSplineEvaluationData< Degree >::SetCenterEvaluator( typename CenterEvaluator::Evaluator& evaluator , int depth , bool dirichlet )
{
evaluator._depth = depth;
int dim = BSplineEvaluationData< Degree >::Dimension( depth ) , res = 1<<depth;
for( int i=0 ; i<CenterEvaluator::Size ; i++ ) for( int j=SupportStart ; j<=SupportEnd ; j++ )
{
int ii = ( i<=CenterEvaluator::Start ? i : ( dim - CenterEvaluator::Size + i ) );
double s = 0.5 + ii + j;
for( int d1=0 ; d1<2 ; d1++ ) evaluator._ccValues[d1][i][j-SupportStart] = Value( depth , ii , s/res , dirichlet , d1!=0 );
}
}
template< int Degree >
void BSplineEvaluationData< Degree >::SetChildCenterEvaluator( typename CenterEvaluator::ChildEvaluator& evaluator , int parentDepth , bool dirichlet )
{
evaluator._parentDepth = parentDepth;
int dim = BSplineEvaluationData< Degree >::Dimension( parentDepth ) , res = 1<<(parentDepth+1);
for( int i=0 ; i<CenterEvaluator::Size ; i++ ) for( int j=ChildSupportStart ; j<=ChildSupportEnd ; j++ )
{
int ii = ( i<=CenterEvaluator::Start ? i : ( dim - CenterEvaluator::Size + i ) );
double s = 0.5 + 2*ii + j;
for( int d1=0 ; d1<2 ; d1++ ) evaluator._pcValues[d1][i][j-ChildSupportStart] = Value( parentDepth , ii , s/res , dirichlet , d1!=0 );
}
}
template< int Degree >
double BSplineEvaluationData< Degree >::CenterEvaluator::Evaluator::value( int fIdx , int cIdx , bool d ) const
{
int dd = cIdx-fIdx , res = 1<<(_depth) , dim = Dimension(_depth);
if( cIdx<0 || fIdx<0 || cIdx>=res || fIdx>=dim || dd<SupportStart || dd>SupportEnd ) return 0;
return _ccValues[d?1:0][ CenterEvaluator::Index( _depth , fIdx ) ][dd-SupportStart];
}
template< int Degree >
double BSplineEvaluationData< Degree >::CenterEvaluator::ChildEvaluator::value( int fIdx , int cIdx , bool d ) const
{
int dd = cIdx-2*fIdx , res = 1<<(_parentDepth+1) , dim = Dimension(_parentDepth);
if( cIdx<0 || fIdx<0 || cIdx>=res || fIdx>=dim || dd<ChildSupportStart || dd>ChildSupportEnd ) return 0;
return _pcValues[d?1:0][ CenterEvaluator::Index( _parentDepth , fIdx ) ][dd-ChildSupportStart];
}
template< int Degree >
void BSplineEvaluationData< Degree >::SetCornerEvaluator( typename CornerEvaluator::Evaluator& evaluator , int depth , bool dirichlet )
{
evaluator._depth = depth;
int dim = BSplineEvaluationData< Degree >::Dimension( depth ) , res = 1<<depth;
for( int i=0 ; i<CornerEvaluator::Size ; i++ ) for( int j=CornerStart ; j<=CornerEnd ; j++ )
{
int ii = ( i<=CornerEvaluator::Start ? i : ( dim - CornerEvaluator::Size + i ) );
double s = ii + j;
for( int d1=0 ; d1<2 ; d1++ ) evaluator._ccValues[d1][i][j-CornerStart] = Value( depth , ii , s/res , dirichlet , d1!=0 );
}
}
template< int Degree >
void BSplineEvaluationData< Degree >::SetChildCornerEvaluator( typename CornerEvaluator::ChildEvaluator& evaluator , int parentDepth , bool dirichlet )
{
evaluator._parentDepth = parentDepth;
int dim = BSplineEvaluationData< Degree >::Dimension( parentDepth ) , res = 1<<(parentDepth+1);
for( int i=0 ; i<CornerEvaluator::Size ; i++ ) for( int j=ChildCornerStart ; j<=ChildCornerEnd ; j++ )
{
int ii = ( i<=CornerEvaluator::Start ? i : ( dim - CornerEvaluator::Size + i ) );
double s = 2*ii + j;
for( int d1=0 ; d1<2 ; d1++ ) evaluator._pcValues[d1][i][j-ChildCornerStart] = Value( parentDepth , ii , s/res , dirichlet , d1!=0 );
}
}
template< int Degree >
void BSplineEvaluationData< Degree >::SetUpSampleEvaluator( UpSampleEvaluator& evaluator , int lowDepth , bool dirichlet )
{
evaluator._lowDepth = lowDepth;
int lowDim = Dimension(lowDepth);
for( int i=0 ; i<UpSampleEvaluator::Size ; i++ )
{
int ii = ( i<=UpSampleEvaluator::Start ? i : ( lowDim - UpSampleEvaluator::Size + i ) );
BSplineUpSamplingCoefficients b( lowDepth , ii , dirichlet );
for( int j=0 ; j<UpSampleSize ; j++ ) evaluator._pcValues[i][j] = b[j];
}
}
template< int Degree >
double BSplineEvaluationData< Degree >::CornerEvaluator::Evaluator::value( int fIdx , int cIdx , bool d ) const
{
int dd = cIdx-fIdx , res = ( 1<<_depth ) + 1 , dim = Dimension(_depth);
if( cIdx<0 || fIdx<0 || cIdx>=res || fIdx>=dim || dd<CornerStart || dd>CornerEnd ) return 0;
return _ccValues[d?1:0][ CornerEvaluator::Index( _depth , fIdx ) ][dd-CornerStart];
}
template< int Degree >
double BSplineEvaluationData< Degree >::CornerEvaluator::ChildEvaluator::value( int fIdx , int cIdx , bool d ) const
{
int dd = cIdx-2*fIdx , res = ( 1<<(_parentDepth+1) ) + 1 , dim = Dimension(_parentDepth);
if( cIdx<0 || fIdx<0 || cIdx>=res || fIdx>=dim || dd<ChildCornerStart || dd>ChildCornerEnd ) return 0;
return _pcValues[d?1:0][ CornerEvaluator::Index( _parentDepth , fIdx ) ][dd-ChildCornerStart];
}
template< int Degree >
double BSplineEvaluationData< Degree >::UpSampleEvaluator::value( int pIdx , int cIdx ) const
{
int dd = cIdx-2*pIdx , pDim = Dimension( _lowDepth ) , cDim = Dimension( _lowDepth+1 );
if( cIdx<0 || pIdx<0 || cIdx>=cDim || pIdx>=pDim || dd<UpSampleStart || dd>UpSampleEnd ) return 0;
return _pcValues[ UpSampleEvaluator::Index( _lowDepth , pIdx ) ][dd-UpSampleStart];
}
//////////////////////////////////////////////
// BSplineEvaluationData::BSplineComponents //
//////////////////////////////////////////////
template< int Degree >
BSplineEvaluationData< Degree >::BSplineComponents::BSplineComponents( int depth , int offset , bool dirichlet )
{
int res = 1<<depth;
BSplineElements< Degree > elements( res , offset , dirichlet );
// The first index is the position, the second is the element type
Polynomial< Degree > components[Degree+1][Degree+1];
// Generate the elements that can appear in the base function corresponding to the base function at (depth,offset) = (0,0)
for( int d=0 ; d<=Degree ; d++ ) for( int dd=0 ; dd<=Degree ; dd++ ) components[d][dd] = Polynomial< Degree >::BSplineComponent( Degree-dd ).shift( -( (Degree+1)/2 ) + d );
// Now adjust to the desired depth and offset
double width = 1. / res;
for( int d=0 ; d<=Degree ; d++ ) for( int dd=0 ; dd<=Degree ; dd++ ) components[d][dd] = components[d][dd].scale( width ).shift( width*offset );
// Now write in the polynomials
for( int d=0 ; d<=Degree ; d++ )
{
int idx = offset + SupportStart + d;
_polys[d] = Polynomial< Degree >();
if( idx>=0 && idx<res ) for( int dd=0 ; dd<=Degree ; dd++ ) _polys[d] += components[d][dd] * ( ( double )( elements[idx][dd] ) ) / elements.denominator;
}
}
//////////////////////////////////////////////////////////
// BSplineEvaluationData::BSplineUpSamplingCoefficients //
//////////////////////////////////////////////////////////
template< int Degree >
BSplineEvaluationData< Degree >::BSplineUpSamplingCoefficients::BSplineUpSamplingCoefficients( int depth , int offset , bool dirichlet )
{
// [ 1/8 1/2 3/4 1/2 1/8]
// [ 1 , 1 ] -> [ 3/4 , 1/2 , 1/8 ] + [ 1/8 , 1/2 , 3/4 ] = [ 7/8 , 1 , 7/8 ]
int dim = Dimension(depth) , _dim = Dimension(depth+1);
bool reflect;
offset = BSplineData< Degree >::RemapOffset( depth , offset , reflect );
int multiplier = ( dirichlet && reflect ) ? -1 : 1;
bool useReflected = Inset || ( offset % ( dim-1 ) );
int b[ UpSampleSize ];
Polynomial< Degree+1 >::BinomialCoefficients( b );
// Clear the values
memset( _coefficients , 0 , sizeof(int) * UpSampleSize );
// Get the array of coefficients, relative to the origin
int* coefficients = _coefficients - ( 2*offset + UpSampleStart );
for( int i=UpSampleStart ; i<=UpSampleEnd ; i++ )
{
int _offset = 2*offset+i;
_offset = BSplineData< Degree >::RemapOffset( depth+1 , _offset , reflect );
if( useReflected || !reflect )
{
int _multiplier = multiplier * ( ( dirichlet && reflect ) ? -1 : 1 );
coefficients[ _offset ] += b[ i-UpSampleStart ] * _multiplier;
}
// If we are not inset and we are at the boundary, use the reflection as well
if( !Inset && ( offset % (dim-1) ) && !( _offset % (_dim-1) ) )
{
_offset = BSplineData< Degree >::RemapOffset( depth+1 , _offset , reflect );
int _multiplier = multiplier * ( ( dirichlet && reflect ) ? -1 : 1 );
if( dirichlet ) _multiplier *= -1;
coefficients[ _offset ] += b[ i-UpSampleStart ] * _multiplier;
}
}
}
////////////////////////////
// BSplineIntegrationData //
////////////////////////////
template< int Degree1 , int Degree2 >
double BSplineIntegrationData< Degree1 , Degree2 >::Dot( int depth1 , int off1 , bool dirichlet1 , bool d1 , int depth2 , int off2 , bool dirichlet2 , bool d2 )
{
const int _Degree1 = (d1 ? (Degree1-1) : Degree1) , _Degree2 = (d2 ? (Degree2-1) : Degree2);
int sums[ Degree1+1 ][ Degree2+1 ];
int depth = std::max< int >( depth1 , depth2 );
BSplineElements< Degree1 > b1( 1<<depth1 , off1 , dirichlet1 );
BSplineElements< Degree2 > b2( 1<<depth2 , off2 , dirichlet2 );
{
BSplineElements< Degree1 > b;
while( depth1<depth ) b=b1 , b.upSample( b1 ) , depth1++;
}
{
BSplineElements< Degree2 > b;
while( depth2<depth ) b=b2 , b.upSample( b2 ) , depth2++;
}
BSplineElements< Degree1-1 > db1;
BSplineElements< Degree2-1 > db2;
b1.differentiate( db1 ) , b2.differentiate( db2 );
int start1=-1 , end1=-1 , start2=-1 , end2=-1;
for( int i=0 ; i<int( b1.size() ) ; i++ )
{
for( int j=0 ; j<=Degree1 ; j++ )
{
if( b1[i][j] && start1==-1 ) start1 = i;
if( b1[i][j] ) end1 = i+1;
}
for( int j=0 ; j<=Degree2 ; j++ )
{
if( b2[i][j] && start2==-1 ) start2 = i;
if( b2[i][j] ) end2 = i+1;
}
}
if( start1==end1 || start2==end2 || start1>=end2 || start2>=end1 ) return 0.;
int start = std::max< int >( start1 , start2 ) , end = std::min< int >( end1 , end2 );
memset( sums , 0 , sizeof( sums ) );
// Iterate over the support
for( int i=start ; i<end ; i++ )
// Iterate over all pairs of elements within a node
for( int j=0 ; j<=_Degree1 ; j++ ) for( int k=0 ; k<=_Degree2 ; k++ )
// Accumulate the product of the coefficients
sums[j][k] += ( d1 ? db1[i][j] : b1[i][j] ) * ( d2 ? db2[i][k] : b2[i][k] );
double _dot = 0;
if( d1 && d2 )
{
double integrals[ Degree1 ][ Degree2 ];
SetBSplineElementIntegrals< Degree1-1 , Degree2-1 >( integrals );
for( int j=0 ; j<=_Degree1 ; j++ ) for( int k=0 ; k<=_Degree2 ; k++ ) _dot += integrals[j][k] * sums[j][k];
}
else if( d1 )
{
double integrals[ Degree1 ][ Degree2+1 ];
SetBSplineElementIntegrals< Degree1-1 , Degree2 >( integrals );
for( int j=0 ; j<=_Degree1 ; j++ ) for( int k=0 ; k<=_Degree2 ; k++ ) _dot += integrals[j][k] * sums[j][k];
}
else if( d2 )
{
double integrals[ Degree1+1 ][ Degree2 ];
SetBSplineElementIntegrals< Degree1 , Degree2-1 >( integrals );
for( int j=0 ; j<=_Degree1 ; j++ ) for( int k=0 ; k<=_Degree2 ; k++ ) _dot += integrals[j][k] * sums[j][k];
}
else
{
double integrals[ Degree1+1 ][ Degree2+1 ];
SetBSplineElementIntegrals< Degree1 , Degree2 >( integrals );
for( int j=0 ; j<=_Degree1 ; j++ ) for( int k=0 ; k<=_Degree2 ; k++ ) _dot += integrals[j][k] * sums[j][k];
}
_dot /= b1.denominator;
_dot /= b2.denominator;
if ( d1 && d2 ) return _dot * (1<<depth);
else if( d1 || d2 ) return _dot;
else return _dot / (1<<depth);
}
template< int Degree1 , int Degree2 >
void BSplineIntegrationData< Degree1, Degree2 >::SetIntegrator( typename FunctionIntegrator::Integrator& integrator , int depth , bool dirichlet1 , bool dirichlet2 )
{
integrator._depth = depth;
int dim = BSplineEvaluationData< Degree2 >::Dimension( depth );
for( int i=0 ; i<FunctionIntegrator::Size ; i++ ) for( int j=OverlapStart ; j<=OverlapEnd ; j++ )
{
int ii = ( i<=FunctionIntegrator::Start ? i : ( dim - FunctionIntegrator::Size + i ) );
for( int d1=0 ; d1<2 ; d1++ ) for( int d2=0 ; d2<2 ; d2++ ) integrator._ccIntegrals[d1][d2][i][j-OverlapStart] = Dot( depth , ii , dirichlet1 , d1!=0 , depth , ii+j , dirichlet2 , d2!=0 );
}
}
template< int Degree1 , int Degree2 >
void BSplineIntegrationData< Degree1, Degree2 >::SetChildIntegrator( typename FunctionIntegrator::ChildIntegrator& integrator , int parentDepth , bool dirichlet1 , bool dirichlet2 )
{
integrator._parentDepth = parentDepth;
int dim = BSplineEvaluationData< Degree2 >::Dimension( parentDepth );
for( int i=0 ; i<FunctionIntegrator::Size ; i++ ) for( int j=ChildOverlapStart ; j<=ChildOverlapEnd ; j++ )
{
int ii = ( i<=FunctionIntegrator::Start ? i : ( dim - FunctionIntegrator::Size + i ) );
for( int d1=0 ; d1<2 ; d1++ ) for( int d2=0 ; d2<2 ; d2++ ) integrator._pcIntegrals[d1][d2][i][j-ChildOverlapStart] = Dot( parentDepth , ii , dirichlet1 , d1!=0 , parentDepth+1 , 2*ii+j , dirichlet2 , d2!=0 );
}
}
template< int Degree1 , int Degree2 >
double BSplineIntegrationData< Degree1 , Degree2 >::FunctionIntegrator::Integrator::dot( int off1 , int off2 , bool d1 , bool d2 ) const
{
int d = off2-off1 , dim1 = BSplineEvaluationData< Degree1 >::Dimension( _depth ) , dim2 = BSplineEvaluationData< Degree2 >::Dimension( _depth );
if( off1<0 || off2<0 || off1>=dim1 || off2>=dim2 || d<OverlapStart || d>OverlapEnd ) return 0;
return _ccIntegrals[d1?1:0][d2?1:0][ FunctionIntegrator::Index( _depth , off1 ) ][d-OverlapStart];
}
template< int Degree1 , int Degree2 >
double BSplineIntegrationData< Degree1 , Degree2 >::FunctionIntegrator::ChildIntegrator::dot( int off1 , int off2 , bool d1 , bool d2 ) const
{
int d = off2-2*off1 , dim1 = BSplineEvaluationData< Degree1 >::Dimension( _parentDepth ) , dim2 = BSplineEvaluationData< Degree2 >::Dimension( _parentDepth+1 );
if( off1<0 || off2<0 || off1>=dim1 || off2>=dim2 || d<ChildOverlapStart || d>ChildOverlapEnd ) return 0;
return _pcIntegrals[d1?1:0][d2?1:0][ FunctionIntegrator::Index( _parentDepth , off1 ) ][d-ChildOverlapStart];
}
/////////////////
// BSplineData //
/////////////////
#define MODULO( A , B ) ( (A)<0 ? ( (B)-((-(A))%(B)) ) % (B) : (A) % (B) )
template< int Degree >
int BSplineData< Degree >::RemapOffset( int depth , int offset , bool& reflect )
{
const int I = ( Degree&1 ) ? 0 : 1;
int dim = Dimension( depth );
offset = MODULO( offset , 2*(dim-1+I) );
reflect = offset>=dim;
if( reflect ) return 2*(dim-1+I) - (offset+I);
else return offset;
}
#undef MODULO
template< int Degree > BSplineData< Degree >::BSplineData( void ){ functionCount = sampleCount = 0; }
template< int Degree >
void BSplineData< Degree >::set( int maxDepth , bool dirichlet )
{
_dirichlet = dirichlet;
depth = maxDepth;
functionCount = TotalFunctionCount( depth );
sampleCount = TotalSampleCount( depth );
baseBSplines = NewPointer< typename BSplineEvaluationData< Degree >::BSplineComponents >( functionCount );
for( size_t i=0 ; i<functionCount ; i++ )
{
int d , off;
FactorFunctionIndex( (int)i , d , off );
baseBSplines[i] = typename BSplineEvaluationData< Degree >::BSplineComponents( d , off , _dirichlet );
}
}
/////////////////////
// BSplineElements //
/////////////////////
template< int Degree >
BSplineElements< Degree >::BSplineElements( int res , int offset , bool dirichlet )
{
denominator = 1;
std::vector< BSplineElementCoefficients< Degree > >::resize( res , BSplineElementCoefficients< Degree >() );
// If we have primal dirichlet constraints, the boundary functions are necessarily zero
if( _Primal && dirichlet && !(offset%res) ) return;
// Construct the B-Spline
for( int i=0 ; i<=Degree ; i++ )
{
int idx = -_Off + offset + i;
if( idx>=0 && idx<res ) (*this)[idx][i] = 1;
}
// Fold in the periodic instances (which cancels the negation)
_addPeriodic< true >( _RotateLeft ( offset , res ) , false ) , _addPeriodic< false >( _RotateRight( offset , res ) , false );
// Recursively fold in the boundaries
if( _Primal && !(offset%res) ) return;
// Fold in the reflected instance (which may require negation)
_addPeriodic< true >( _ReflectLeft( offset , res ) , dirichlet ) , _addPeriodic< false >( _ReflectRight( offset , res ) , dirichlet );
}
template< int Degree > int BSplineElements< Degree >::_ReflectLeft ( int offset , int res ){ return (Degree&1) ? -offset : -1-offset; }
template< int Degree > int BSplineElements< Degree >::_ReflectRight( int offset , int res ){ return (Degree&1) ? 2*res-offset : 2*res-1-offset; }
template< int Degree > int BSplineElements< Degree >::_RotateLeft ( int offset , int res ){ return offset-2*res; }
template< int Degree > int BSplineElements< Degree >::_RotateRight ( int offset , int res ){ return offset+2*res; }
template< int Degree >
template< bool Left >
void BSplineElements< Degree >::_addPeriodic( int offset , bool negate )
{
int res = int( std::vector< BSplineElementCoefficients< Degree > >::size() );
bool set = false;
// Add in the corresponding B-spline elements (possibly negated)
for( int i=0 ; i<=Degree ; i++ )
{
int idx = -_Off + offset + i;
if( idx>=0 && idx<res ) (*this)[idx][i] += negate ? -1 : 1 , set = true;
}
// If there is a change for additional overlap, give it a go
if( set ) _addPeriodic< Left >( Left ? _RotateLeft( offset , res ) : _RotateRight( offset , res ) , negate );
}
template< int Degree >
void BSplineElements< Degree >::upSample( BSplineElements< Degree >& high ) const
{
int bCoefficients[ BSplineEvaluationData< Degree >::UpSampleSize ];
Polynomial< Degree+1 >::BinomialCoefficients( bCoefficients );
high.resize( std::vector< BSplineElementCoefficients< Degree > >::size()*2 );
high.assign( high.size() , BSplineElementCoefficients< Degree >() );
// [NOTE] We have flipped the order of the B-spline elements
for( int i=0 ; i<int(std::vector< BSplineElementCoefficients< Degree > >::size()) ; i++ ) for( int j=0 ; j<=Degree ; j++ )
{
// At index I , B-spline element J corresponds to a B-spline centered at:
// I - SupportStart - J
int idx = i - BSplineEvaluationData< Degree >::SupportStart - j;
for( int k=BSplineEvaluationData< Degree >::UpSampleStart ; k<=BSplineEvaluationData< Degree >::UpSampleEnd ; k++ )
{
// Index idx at the coarser resolution gets up-sampled into indices:
// 2*idx + [UpSampleStart,UpSampleEnd]
// at the finer resolution
int _idx = 2*idx + k;
// Compute the index of the B-spline element relative to 2*i and 2*i+1
int _j1 = -_idx + 2*i - BSplineEvaluationData< Degree >::SupportStart , _j2 = -_idx + 2*i + 1 - BSplineEvaluationData< Degree >::SupportStart;
if( _j1>=0 && _j1<=Degree ) high[2*i+0][_j1] += (*this)[i][j] * bCoefficients[k-BSplineEvaluationData< Degree >::UpSampleStart];
if( _j2>=0 && _j2<=Degree ) high[2*i+1][_j2] += (*this)[i][j] * bCoefficients[k-BSplineEvaluationData< Degree >::UpSampleStart];
}
}
high.denominator = denominator<<Degree;
}
template< int Degree >
void BSplineElements< Degree >::differentiate( BSplineElements< Degree-1 >& d ) const
{
d.resize( std::vector< BSplineElementCoefficients< Degree > >::size() );
d.assign( d.size() , BSplineElementCoefficients< Degree-1 >() );
for( int i=0 ; i<int(std::vector< BSplineElementCoefficients< Degree > >::size()) ; i++ ) for( int j=0 ; j<=Degree ; j++ )
{
if( j-1>=0 ) d[i][j-1] -= (*this)[i][j];
if( j<Degree ) d[i][j ] += (*this)[i][j];
}
d.denominator = denominator;
}
// If we were really good, we would implement this integral table to store
// rational values to improve precision...
template< int Degree1 , int Degree2 >
void SetBSplineElementIntegrals( double integrals[Degree1+1][Degree2+1] )
{
for( int i=0 ; i<=Degree1 ; i++ )
{
Polynomial< Degree1 > p1 = Polynomial< Degree1 >::BSplineComponent( Degree1-i );
for( int j=0 ; j<=Degree2 ; j++ )
{
Polynomial< Degree2 > p2 = Polynomial< Degree2 >::BSplineComponent( Degree2-j );
integrals[i][j] = ( p1 * p2 ).integral( 0 , 1 );
}
}
}
|