File: FunctionData.inl

package info (click to toggle)
colmap 3.5-1
  • links: PTS
  • area: main
  • in suites: buster
  • size: 20,564 kB
  • sloc: ansic: 170,595; cpp: 95,339; python: 2,335; makefile: 183; sh: 51
file content (415 lines) | stat: -rwxr-xr-x 15,430 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
/*
Copyright (c) 2006, Michael Kazhdan and Matthew Bolitho
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. Redistributions in binary form must reproduce
the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution. 

Neither the name of the Johns Hopkins University nor the names of its contributors
may be used to endorse or promote products derived from this software without specific
prior written permission. 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES 
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE  GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
*/

//////////////////
// FunctionData //
//////////////////
template<int Degree,class Real>
FunctionData<Degree,Real>::FunctionData(void)
{
	dotTable=dDotTable=d2DotTable=NULL;
	valueTables=dValueTables=NULL;
	res=0;
}

template<int Degree,class Real>
FunctionData<Degree,Real>::~FunctionData(void)
{
	if(res)
	{
		if(  dotTable) delete[]   dotTable;
		if( dDotTable) delete[]  dDotTable;
		if(d2DotTable) delete[] d2DotTable;
		if( valueTables) delete[]  valueTables;
		if(dValueTables) delete[] dValueTables;
	}
	dotTable=dDotTable=d2DotTable=NULL;
	valueTables=dValueTables=NULL;
	res=0;
}

template<int Degree,class Real>
#if BOUNDARY_CONDITIONS
void FunctionData<Degree,Real>::set( const int& maxDepth , const PPolynomial<Degree>& F , const int& normalize , bool useDotRatios , bool reflectBoundary )
#else // !BOUNDARY_CONDITIONS
void FunctionData<Degree,Real>::set(const int& maxDepth,const PPolynomial<Degree>& F,const int& normalize , bool useDotRatios )
#endif // BOUNDARY_CONDITIONS
{
	this->normalize       = normalize;
	this->useDotRatios    = useDotRatios;
#if BOUNDARY_CONDITIONS
	this->reflectBoundary = reflectBoundary;
#endif // BOUNDARY_CONDITIONS

	depth = maxDepth;
	res = BinaryNode<double>::CumulativeCenterCount( depth );
	res2 = (1<<(depth+1))+1;
	baseFunctions = new PPolynomial<Degree+1>[res];
	// Scale the function so that it has:
	// 0] Value 1 at 0
	// 1] Integral equal to 1
	// 2] Square integral equal to 1
	switch( normalize )
	{
		case 2:
			baseFunction=F/sqrt((F*F).integral(F.polys[0].start,F.polys[F.polyCount-1].start));
			break;
		case 1:
			baseFunction=F/F.integral(F.polys[0].start,F.polys[F.polyCount-1].start);
			break;
		default:
			baseFunction=F/F(0);
	}
	dBaseFunction = baseFunction.derivative();
#if BOUNDARY_CONDITIONS
	leftBaseFunction   = baseFunction + baseFunction.shift( -1 );
	rightBaseFunction  = baseFunction + baseFunction.shift(  1 );
	dLeftBaseFunction  =  leftBaseFunction.derivative();
	dRightBaseFunction = rightBaseFunction.derivative();
#endif // BOUNDARY_CONDITIONS
	double c1,w1;
	for( int i=0 ; i<res ; i++ )
	{
		BinaryNode< double >::CenterAndWidth( i , c1 , w1 );
#if BOUNDARY_CONDITIONS
		if( reflectBoundary )
		{
			int d , off;
			BinaryNode< double >::DepthAndOffset( i , d , off );
			if     ( off==0          ) baseFunctions[i] =  leftBaseFunction.scale( w1 ).shift( c1 );
			else if( off==((1<<d)-1) ) baseFunctions[i] = rightBaseFunction.scale( w1 ).shift( c1 );
			else                       baseFunctions[i] =      baseFunction.scale( w1 ).shift( c1 );
		}
		else baseFunctions[i] = baseFunction.scale(w1).shift(c1);
#else // !BOUNDARY_CONDITIONS
		baseFunctions[i] = baseFunction.scale(w1).shift(c1);
#endif // BOUNDARY_CONDITIONS
		// Scale the function so that it has L2-norm equal to one
		switch( normalize )
		{
			case 2:
				baseFunctions[i]/=sqrt(w1);
				break;
			case 1:
				baseFunctions[i]/=w1;
				break;
		}
	}
}
template<int Degree,class Real>
void FunctionData<Degree,Real>::setDotTables( const int& flags )
{
	clearDotTables( flags );
	int size;
	size = ( res*res + res )>>1;
	if( flags & DOT_FLAG )
	{
		dotTable = new Real[size];
		memset( dotTable , 0 , sizeof(Real)*size );
	}
	if( flags & D_DOT_FLAG )
	{
		dDotTable = new Real[size];
		memset( dDotTable , 0 , sizeof(Real)*size );
	}
	if( flags & D2_DOT_FLAG )
	{
		d2DotTable = new Real[size];
		memset( d2DotTable , 0 , sizeof(Real)*size );
	}
	double t1 , t2;
	t1 = baseFunction.polys[0].start;
	t2 = baseFunction.polys[baseFunction.polyCount-1].start;
	for( int i=0 ; i<res ; i++ )
	{
		double c1 , c2 , w1 , w2;
		BinaryNode<double>::CenterAndWidth( i , c1 , w1 );
#if BOUNDARY_CONDITIONS
		int d1 , d2 , off1 , off2;
		BinaryNode< double >::DepthAndOffset( i , d1 , off1 );
		int boundary1 = 0;
		if     ( reflectBoundary && off1==0             ) boundary1 = -1;
		else if( reflectBoundary && off1==( (1<<d1)-1 ) ) boundary1 =  1;
#endif // BOUNDARY_CONDITIONS
		double start1 = t1 * w1 + c1;
		double end1   = t2 * w1 + c1;
		for( int j=0 ; j<=i ; j++ )
		{
			BinaryNode<double>::CenterAndWidth( j , c2 , w2 );
#if BOUNDARY_CONDITIONS
			BinaryNode< double >::DepthAndOffset( j , d2 , off2 );
			int boundary2 = 0;
			if     ( reflectBoundary && off2==0             ) boundary2 = -1;
			else if( reflectBoundary && off2==( (1<<d2)-1 ) ) boundary2 =  1;
#endif // BOUNDARY_CONDITIONS
			int idx = SymmetricIndex( i , j );

			double start = t1 * w2 + c2;
			double end   = t2 * w2 + c2;
#if BOUNDARY_CONDITIONS
			if( reflectBoundary )
			{
				if( start<0 ) start = 0;
				if( start>1 ) start = 1;
				if( end  <0 )   end = 0;
				if( end  >1 )   end = 1;
			}
#endif // BOUNDARY_CONDITIONS

			if( start<  start1 ) start = start1;
			if( end  >  end1   )   end = end1;
			if( start>= end    ) continue;

#if BOUNDARY_CONDITIONS
			Real dot = dotProduct( c1 , w1 , c2 , w2 , boundary1 , boundary2 );
#else // !BOUNDARY_CONDITIONS
			Real dot = dotProduct( c1 , w1 , c2 , w2 );
#endif // BOUNDARY_CONDITIONS
			if( fabs(dot)<1e-15 ) continue;
			if( flags & DOT_FLAG ) dotTable[idx]=dot;
			if( useDotRatios )
			{
#if BOUNDARY_CONDITIONS
				if( flags &  D_DOT_FLAG )  dDotTable[idx] = -dDotProduct( c1 , w1 , c2 , w2 , boundary1 , boundary2 ) / dot;
				if( flags & D2_DOT_FLAG ) d2DotTable[idx] = d2DotProduct( c1 , w1 , c2 , w2 , boundary1 , boundary2 ) / dot;
#else // !BOUNDARY_CONDITIONS
				if( flags &  D_DOT_FLAG )  dDotTable[idx] = -dDotProduct(c1,w1,c2,w2)/dot;
				if( flags & D2_DOT_FLAG ) d2DotTable[idx] = d2DotProduct(c1,w1,c2,w2)/dot;
#endif // BOUNDARY_CONDITIONS
			}
			else
			{
#if BOUNDARY_CONDITIONS
				if( flags &  D_DOT_FLAG )  dDotTable[idx] =  dDotProduct( c1 , w1 , c2 , w2 , boundary1 , boundary2 );
				if( flags & D2_DOT_FLAG ) d2DotTable[idx] = d2DotProduct( c1 , w1 , c2 , w2 , boundary1 , boundary2 );
#else // !BOUNDARY_CONDTIONS
				if( flags &  D_DOT_FLAG )  dDotTable[idx] =  dDotProduct(c1,w1,c2,w2);
				if( flags & D2_DOT_FLAG ) d2DotTable[idx] = d2DotProduct(c1,w1,c2,w2);
#endif // BOUNDARY_CONDITIONS
			}
		}
	}
}
template<int Degree,class Real>
void FunctionData<Degree,Real>::clearDotTables( const int& flags )
{
	if((flags & DOT_FLAG) && dotTable)
	{
		delete[] dotTable;
		dotTable=NULL;
	}
	if((flags & D_DOT_FLAG) && dDotTable)
	{
		delete[] dDotTable;
		dDotTable=NULL;
	}
	if((flags & D2_DOT_FLAG) && d2DotTable)
	{
		delete[] d2DotTable;
		d2DotTable=NULL;
	}
}
template<int Degree,class Real>
void FunctionData<Degree,Real>::setValueTables( const int& flags , const double& smooth )
{
	clearValueTables();
	if( flags &   VALUE_FLAG )  valueTables = new Real[res*res2];
	if( flags & D_VALUE_FLAG ) dValueTables = new Real[res*res2];
	PPolynomial<Degree+1> function;
	PPolynomial<Degree>  dFunction;
	for( int i=0 ; i<res ; i++ )
	{
		if(smooth>0)
		{
			function=baseFunctions[i].MovingAverage(smooth);
			dFunction=baseFunctions[i].derivative().MovingAverage(smooth);
		}
		else
		{
			function=baseFunctions[i];
			dFunction=baseFunctions[i].derivative();
		}
		for( int j=0 ; j<res2 ; j++ )
		{
			double x=double(j)/(res2-1);
			if(flags &   VALUE_FLAG){ valueTables[j*res+i]=Real( function(x));}
			if(flags & D_VALUE_FLAG){dValueTables[j*res+i]=Real(dFunction(x));}
		}
	}
}
template<int Degree,class Real>
void FunctionData<Degree,Real>::setValueTables(const int& flags,const double& valueSmooth,const double& normalSmooth){
	clearValueTables();
	if(flags &   VALUE_FLAG){ valueTables=new Real[res*res2];}
	if(flags & D_VALUE_FLAG){dValueTables=new Real[res*res2];}
	PPolynomial<Degree+1> function;
	PPolynomial<Degree>  dFunction;
	for(int i=0;i<res;i++){
		if(valueSmooth>0)	{ function=baseFunctions[i].MovingAverage(valueSmooth);}
		else				{ function=baseFunctions[i];}
		if(normalSmooth>0)	{dFunction=baseFunctions[i].derivative().MovingAverage(normalSmooth);}
		else				{dFunction=baseFunctions[i].derivative();}

		for(int j=0;j<res2;j++){
			double x=double(j)/(res2-1);
			if(flags &   VALUE_FLAG){ valueTables[j*res+i]=Real( function(x));}
			if(flags & D_VALUE_FLAG){dValueTables[j*res+i]=Real(dFunction(x));}
		}
	}
}


template<int Degree,class Real>
void FunctionData<Degree,Real>::clearValueTables(void){
	if( valueTables){delete[]  valueTables;}
	if(dValueTables){delete[] dValueTables;}
	valueTables=dValueTables=NULL;
}

#if BOUNDARY_CONDITIONS
template<int Degree,class Real>
Real FunctionData<Degree,Real>::dotProduct( const double& center1 , const double& width1 , const double& center2 , const double& width2 , int boundary1 , int boundary2 ) const
{
	const PPolynomial< Degree > *b1 , *b2;
	if     ( boundary1==-1 ) b1 = & leftBaseFunction;
	else if( boundary1== 0 ) b1 = &     baseFunction;
	else if( boundary1== 1 ) b1 = &rightBaseFunction;
	if     ( boundary2==-1 ) b2 = & leftBaseFunction;
	else if( boundary2== 0 ) b2 = &     baseFunction;
	else if( boundary2== 1 ) b2 = &rightBaseFunction;
	double r=fabs( baseFunction.polys[0].start );
	switch( normalize )
	{
	case 2:
		return Real(((*b1)*b2->scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)*width1/sqrt(width1*width2));
	case 1:
		return Real(((*b1)*b2->scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)*width1/(width1*width2));
	default:
		return Real(((*b1)*b2->scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)*width1);
	}
}
template<int Degree,class Real>
Real FunctionData<Degree,Real>::dDotProduct( const double& center1 , const double& width1 , const double& center2 , const double& width2 , int boundary1 , int boundary2 ) const
{
	const PPolynomial< Degree-1 > *b1;
	const PPolynomial< Degree   > *b2;
	if     ( boundary1==-1 ) b1 = & dLeftBaseFunction;
	else if( boundary1== 0 ) b1 = &     dBaseFunction;
	else if( boundary1== 1 ) b1 = &dRightBaseFunction;
	if     ( boundary2==-1 ) b2 = &  leftBaseFunction;
	else if( boundary2== 0 ) b2 = &      baseFunction;
	else if( boundary2== 1 ) b2 = & rightBaseFunction;
	double r=fabs(baseFunction.polys[0].start);
	switch(normalize){
		case 2:
			return Real(((*b1)*b2->scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/sqrt(width1*width2));
		case 1:
			return Real(((*b1)*b2->scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/(width1*width2));
		default:
			return Real(((*b1)*b2->scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r));
	}
}
template<int Degree,class Real>
Real FunctionData<Degree,Real>::d2DotProduct( const double& center1 , const double& width1 , const double& center2 , const double& width2 , int boundary1 , int boundary2 ) const
{
	const PPolynomial< Degree-1 > *b1 , *b2;
	if     ( boundary1==-1 ) b1 = & dLeftBaseFunction;
	else if( boundary1== 0 ) b1 = &     dBaseFunction;
	else if( boundary1== 1 ) b1 = &dRightBaseFunction;
	if     ( boundary2==-1 ) b2 = & dLeftBaseFunction;
	else if( boundary2== 0 ) b2 = &     dBaseFunction;
	else if( boundary2== 1 ) b2 = &dRightBaseFunction;
	double r=fabs(baseFunction.polys[0].start);
	switch( normalize )
	{
		case 2:
			return Real(((*b1)*b2->scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/width2/sqrt(width1*width2));
		case 1:
			return Real(((*b1)*b2->scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/width2/(width1*width2));
		default:
			return Real(((*b1)*b2->scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/width2);
	}
}
#else // !BOUNDARY_CONDITIONS
template<int Degree,class Real>
Real FunctionData<Degree,Real>::dotProduct(const double& center1,const double& width1,const double& center2,const double& width2) const{
	double r=fabs(baseFunction.polys[0].start);
	switch( normalize )
	{
		case 2:
			return Real((baseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)*width1/sqrt(width1*width2));
		case 1:
			return Real((baseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)*width1/(width1*width2));
		default:
			return Real((baseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)*width1);
	}
}
template<int Degree,class Real>
Real FunctionData<Degree,Real>::dDotProduct(const double& center1,const double& width1,const double& center2,const double& width2) const{
	double r=fabs(baseFunction.polys[0].start);
	switch(normalize){
		case 2:
			return Real((dBaseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/sqrt(width1*width2));
		case 1:
			return Real((dBaseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/(width1*width2));
		default:
			return Real((dBaseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r));
	}
}
template<int Degree,class Real>
Real FunctionData<Degree,Real>::d2DotProduct(const double& center1,const double& width1,const double& center2,const double& width2) const{
	double r=fabs(baseFunction.polys[0].start);
	switch(normalize){
		case 2:
			return Real((dBaseFunction*dBaseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/width2/sqrt(width1*width2));
		case 1:
			return Real((dBaseFunction*dBaseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/width2/(width1*width2));
		default:
			return Real((dBaseFunction*dBaseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/width2);
	}
}
#endif // BOUNDARY_CONDITIONS
template<int Degree,class Real>
inline int FunctionData<Degree,Real>::SymmetricIndex( const int& i1 , const int& i2 )
{
	if( i1>i2 ) return ((i1*i1+i1)>>1)+i2;
	else        return ((i2*i2+i2)>>1)+i1;
}
template<int Degree,class Real>
inline int FunctionData<Degree,Real>::SymmetricIndex( const int& i1 , const int& i2 , int& index )
{
	if( i1<i2 )
	{
		index = ((i2*i2+i2)>>1)+i1;
		return 1;
	}
	else{
		index = ((i1*i1+i1)>>1)+i2;
		return 0;
	}
}