1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
|
/*
Copyright (c) 2006, Michael Kazhdan and Matthew Bolitho
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. Redistributions in binary form must reproduce
the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.
Neither the name of the Johns Hopkins University nor the names of its contributors
may be used to endorse or promote products derived from this software without specific
prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
*/
template< int Degree1 , int Degree2 >
double SystemCoefficients< Degree1 , Degree2 >::GetLaplacian( const typename FunctionIntegrator::Integrator& integrator , const int off1[] , const int off2[] )
{
double vv[] = { integrator.dot( off1[0] , off2[0] , false , false ) , integrator.dot( off1[1] , off2[1] , false , false ) , integrator.dot( off1[2] , off2[2] , false , false ) };
double dd[] = { integrator.dot( off1[0] , off2[0] , true , true ) , integrator.dot( off1[1] , off2[1] , true , true ) , integrator.dot( off1[2] , off2[2] , true , true ) };
return dd[0]*vv[1]*vv[2] + vv[0]*dd[1]*vv[2] + vv[0]*vv[1]*dd[2];
}
template< int Degree1 , int Degree2 >
double SystemCoefficients< Degree1 , Degree2 >::GetLaplacian( const typename FunctionIntegrator::ChildIntegrator& integrator , const int off1[] , const int off2[] )
{
double vv[] = { integrator.dot( off1[0] , off2[0] , false , false ) , integrator.dot( off1[1] , off2[1] , false , false ) , integrator.dot( off1[2] , off2[2] , false , false ) };
double dd[] = { integrator.dot( off1[0] , off2[0] , true , true ) , integrator.dot( off1[1] , off2[1] , true , true ) , integrator.dot( off1[2] , off2[2] , true , true ) };
return dd[0]*vv[1]*vv[2] + vv[0]*dd[1]*vv[2] + vv[0]*vv[1]*dd[2];
}
template< int Degree1 , int Degree2 >
double SystemCoefficients< Degree1 , Degree2 >::GetDivergence1( const typename FunctionIntegrator::Integrator& integrator , const int off1[] , const int off2[] , Point3D< double > normal1 )
{
return Point3D< double >::Dot( GetDivergence1( integrator , off1 , off2 ) , normal1 );
}
template< int Degree1 , int Degree2 >
double SystemCoefficients< Degree1 , Degree2 >::GetDivergence1( const typename FunctionIntegrator::ChildIntegrator& integrator , const int off1[] , const int off2[] , Point3D< double > normal1 )
{
return Point3D< double >::Dot( GetDivergence1( integrator , off1 , off2 ) , normal1 );
}
template< int Degree1 , int Degree2 >
double SystemCoefficients< Degree1 , Degree2 >::GetDivergence2( const typename FunctionIntegrator::Integrator& integrator , const int off1[] , const int off2[] , Point3D< double > normal2 )
{
return Point3D< double >::Dot( GetDivergence2( integrator , off1 , off2 ) , normal2 );
}
template< int Degree1 , int Degree2 >
double SystemCoefficients< Degree1 , Degree2 >::GetDivergence2( const typename FunctionIntegrator::ChildIntegrator& integrator , const int off1[] , const int off2[] , Point3D< double > normal2 )
{
return Point3D< double >::Dot( GetDivergence2( integrator , off1 , off2 ) , normal2 );
}
template< int Degree1 , int Degree2 >
Point3D< double > SystemCoefficients< Degree1 , Degree2 >::GetDivergence1( const typename FunctionIntegrator::Integrator& integrator , const int off1[] , const int off2[] )
{
double vv[] = { integrator.dot( off1[0] , off2[0] , false , false ) , integrator.dot( off1[1] , off2[1] , false , false ) , integrator.dot( off1[2] , off2[2] , false , false ) };
#if GRADIENT_DOMAIN_SOLUTION
// Take the dot-product of the vector-field with the gradient of the basis function
double vd[] = { integrator.dot( off1[0] , off2[0] , true , false ) , integrator.dot( off1[1] , off2[1] , true , false ) , integrator.dot( off1[2] , off2[2] , true , false ) };
return Point3D< double >( vd[0]*vv[1]*vv[2] , vv[0]*vd[1]*vv[2] , vv[0]*vv[1]*vd[2] );
#else // !GRADIENT_DOMAIN_SOLUTION
// Take the dot-product of the divergence of the vector-field with the basis function
double dv[] = { integrator.dot( off1[0] , off2[0] , false , true ) , integrator.dot( off1[1] , off2[1] , false , true ) , integrator.dot( off1[2] , off2[2] , false , true ) };
return -Point3D< double >( dv[0]*vv[1]*vv[2] , vv[0]*dv[1]*vv[2] , vv[0]*vv[1]*dv[2] );
#endif // GRADIENT_DOMAIN_SOLUTION
}
template< int Degree1 , int Degree2 >
Point3D< double > SystemCoefficients< Degree1 , Degree2 >::GetDivergence1( const typename FunctionIntegrator::ChildIntegrator& integrator , const int off1[] , const int off2[] )
{
double vv[] = { integrator.dot( off1[0] , off2[0] , false , false ) , integrator.dot( off1[1] , off2[1] , false , false ) , integrator.dot( off1[2] , off2[2] , false , false ) };
#if GRADIENT_DOMAIN_SOLUTION
// Take the dot-product of the vector-field with the gradient of the basis function
double vd[] = { integrator.dot( off1[0] , off2[0] , true , false ) , integrator.dot( off1[1] , off2[1] , true , false ) , integrator.dot( off1[2] , off2[2] , true , false ) };
return Point3D< double >( vd[0]*vv[1]*vv[2] , vv[0]*vd[1]*vv[2] , vv[0]*vv[1]*vd[2] );
#else // !GRADIENT_DOMAIN_SOLUTION
// Take the dot-product of the divergence of the vector-field with the basis function
double dv[] = { integrator.dot( off1[0] , off2[0] , false , true ) , integrator.dot( off1[1] , off2[1] , false , true ) , integrator.dot( off1[2] , off2[2] , false , true ) };
return -Point3D< double >( dv[0]*vv[1]*vv[2] , vv[0]*dv[1]*vv[2] , vv[0]*vv[1]*dv[2] );
#endif // GRADIENT_DOMAIN_SOLUTION
}
template< int Degree1 , int Degree2 >
Point3D< double > SystemCoefficients< Degree1 , Degree2 >::GetDivergence2( const typename FunctionIntegrator::Integrator& integrator , const int off1[] , const int off2[] )
{
double vv[] = { integrator.dot( off1[0] , off2[0] , false , false ) , integrator.dot( off1[1] , off2[1] , false , false ) , integrator.dot( off1[2] , off2[2] , false , false ) };
#if GRADIENT_DOMAIN_SOLUTION
// Take the dot-product of the vector-field with the gradient of the basis function
double dv[] = { integrator.dot( off1[0] , off2[0] , false , true ) , integrator.dot( off1[1] , off2[1] , false , true ) , integrator.dot( off1[2] , off2[2] , false , true ) };
return Point3D< double >( dv[0]*vv[1]*vv[2] , vv[0]*dv[1]*vv[2] , vv[0]*vv[1]*dv[2] );
#else // !GRADIENT_DOMAIN_SOLUTION
// Take the dot-product of the divergence of the vector-field with the basis function
double vd[] = { integrator.dot( off1[0] , off2[0] , true , false ) , integrator.dot( off1[1] , off2[1] , true , false ) , integrator.dot( off1[2] , off2[2] , true , false ) };
return -Point3D< double >( vd[0]*vv[1]*vv[2] , vv[0]*vd[1]*vv[2] , vv[0]*vv[1]*vd[2] );
#endif // GRADIENT_DOMAIN_SOLUTION
}
template< int Degree1 , int Degree2 >
Point3D< double > SystemCoefficients< Degree1 , Degree2 >::GetDivergence2( const typename FunctionIntegrator::ChildIntegrator& integrator , const int off1[] , const int off2[] )
{
double vv[] = { integrator.dot( off1[0] , off2[0] , false , false ) , integrator.dot( off1[1] , off2[1] , false , false ) , integrator.dot( off1[2] , off2[2] , false , false ) };
#if GRADIENT_DOMAIN_SOLUTION
// Take the dot-product of the vector-field with the gradient of the basis function
double dv[] = { integrator.dot( off1[0] , off2[0] , false , true ) , integrator.dot( off1[1] , off2[1] , false , true ) , integrator.dot( off1[2] , off2[2] , false , true ) };
return Point3D< double >( dv[0]*vv[1]*vv[2] , vv[0]*dv[1]*vv[2] , vv[0]*vv[1]*dv[2] );
#else // !GRADIENT_DOMAIN_SOLUTION
// Take the dot-product of the divergence of the vector-field with the basis function
double vd[] = { integrator.dot( off1[0] , off2[0] , true , false ) , integrator.dot( off1[1] , off2[1] , true , false ) , integrator.dot( off1[2] , off2[2] , true , false ) };
return -Point3D< double >( vd[0]*vv[1]*vv[2] , vv[0]*vd[1]*vv[2] , vv[0]*vv[1]*vd[2] );
#endif // GRADIENT_DOMAIN_SOLUTION
}
// if( scatter ) normals come from the center node
// else normals come from the neighbors
template< int Degree1 , int Degree2 >
void SystemCoefficients< Degree1 , Degree2 >::SetCentralDivergenceStencil( const typename FunctionIntegrator::Integrator& integrator , Stencil< Point3D< double > , OverlapSize >& stencil , bool scatter )
{
int center = ( 1<<integrator.depth() )>>1;
int offset[] = { center , center , center };
for( int x=0 ; x<OverlapSize ; x++ ) for( int y=0 ; y<OverlapSize ; y++ ) for( int z=0 ; z<OverlapSize ; z++ )
{
int _offset[] = { x+center-OverlapEnd , y+center-OverlapEnd , z+center-OverlapEnd };
stencil.values[x][y][z] = scatter ? GetDivergence1( integrator , _offset , offset ) : GetDivergence2( integrator , _offset , offset );
}
}
template< int Degree1 , int Degree2 >
void SystemCoefficients< Degree1 , Degree2 >::SetCentralDivergenceStencils( const typename FunctionIntegrator::ChildIntegrator& integrator , Stencil< Point3D< double > , OverlapSize > stencils[2][2][2] , bool scatter )
{
int center = ( 1<<integrator.childDepth() )>>1;
for( int i=0 ; i<2 ; i++ ) for( int j=0 ; j<2 ; j++ ) for( int k=0 ; k<2 ; k++ )
{
int offset[] = { center+i , center+j , center+k };
for( int x=0 ; x<OverlapSize ; x++ ) for( int y=0 ; y<OverlapSize ; y++ ) for( int z=0 ; z<OverlapSize ; z++ )
{
int _offset[] = { x+center/2-OverlapEnd , y+center/2-OverlapEnd , z+center/2-OverlapEnd };
stencils[i][j][k].values[x][y][z] = scatter ? GetDivergence1( integrator , _offset , offset ) : GetDivergence2( integrator , _offset , offset );
}
}
}
template< int Degree1 , int Degree2 >
void SystemCoefficients< Degree1 , Degree2 >::SetCentralLaplacianStencil( const typename FunctionIntegrator::Integrator& integrator , Stencil< double , OverlapSize >& stencil )
{
int center = ( 1<<integrator.depth() )>>1;
int offset[] = { center , center , center };
for( int x=0 ; x<OverlapSize ; x++ ) for( int y=0 ; y<OverlapSize ; y++ ) for( int z=0 ; z<OverlapSize ; z++ )
{
int _offset[] = { x+center-OverlapEnd , y+center-OverlapEnd , z+center-OverlapEnd };
stencil.values[x][y][z] = GetLaplacian( integrator , _offset , offset );
}
}
template< int Degree1 , int Degree2 >
void SystemCoefficients< Degree1 , Degree2 >::SetCentralLaplacianStencils( const typename FunctionIntegrator::ChildIntegrator& integrator , Stencil< double , OverlapSize > stencils[2][2][2] )
{
int center = ( 1<<integrator.childDepth() )>>1;
for( int i=0 ; i<2 ; i++ ) for( int j=0 ; j<2 ; j++ ) for( int k=0 ; k<2 ; k++ )
{
int offset[] = { center+i , center+j , center+k };
for( int x=0 ; x<OverlapSize ; x++ ) for( int y=0 ; y<OverlapSize ; y++ ) for( int z=0 ; z<OverlapSize ; z++ )
{
int _offset[] = { x+center/2-OverlapEnd , y+center/2-OverlapEnd , z+center/2-OverlapEnd };
stencils[i][j][k].values[x][y][z] = GetLaplacian( integrator , _offset , offset );
}
}
}
template< class Real >
template< int FEMDegree >
void Octree< Real >::_setMultiColorIndices( int start , int end , std::vector< std::vector< int > >& indices ) const
{
static const int OverlapRadius = - BSplineIntegrationData< FEMDegree , FEMDegree >::OverlapStart;
const int modulus = OverlapRadius+1;
indices.resize( modulus*modulus*modulus );
int count[modulus*modulus*modulus];
memset( count , 0 , sizeof(int)*modulus*modulus*modulus );
#pragma omp parallel for num_threads( threads )
for( int i=start ; i<end ; i++ ) if( _IsValidNode< FEMDegree >( _sNodes.treeNodes[i] ) )
{
int d , off[3];
_sNodes.treeNodes[i]->depthAndOffset( d , off );
int idx = (modulus*modulus) * ( off[2]%modulus ) + modulus * ( off[1]%modulus ) + ( off[0]%modulus );
#pragma omp atomic
count[idx]++;
}
for( int i=0 ; i<modulus*modulus*modulus ; i++ ) indices[i].reserve( count[i] ) , count[i]=0;
for( int i=start ; i<end ; i++ ) if( _IsValidNode< FEMDegree >( _sNodes.treeNodes[i] ) )
{
int d , off[3];
_sNodes.treeNodes[i]->depthAndOffset( d , off );
int idx = (modulus*modulus) * ( off[2]%modulus ) + modulus * ( off[1]%modulus ) + ( off[0]%modulus );
indices[idx].push_back( i - start );
}
}
template< class Real >
template< class C , int FEMDegree >
void Octree< Real >::_DownSample( int highDepth , DenseNodeData< C , FEMDegree >& constraints ) const
{
typedef typename TreeOctNode::NeighborKey< -BSplineEvaluationData< FEMDegree >::UpSampleStart , BSplineEvaluationData< FEMDegree >::UpSampleEnd > UpSampleKey;
int lowDepth = highDepth-1;
if( lowDepth<_minDepth ) return;
typename BSplineEvaluationData< FEMDegree >::UpSampleEvaluator upSampleEvaluator;
BSplineEvaluationData< FEMDegree >::SetUpSampleEvaluator( upSampleEvaluator , lowDepth-1 , _dirichlet );
std::vector< UpSampleKey > neighborKeys( std::max< int >( 1 , threads ) );
for( size_t i=0 ; i<neighborKeys.size() ; i++ ) neighborKeys[i].set( lowDepth );
Stencil< double , BSplineEvaluationData< FEMDegree >::UpSampleSize > upSampleStencil;
int lowCenter = _Dimension< FEMDegree >(lowDepth)>>1;
for( int i=0 ; i<BSplineEvaluationData< FEMDegree >::UpSampleSize ; i++ ) for( int j=0 ; j<BSplineEvaluationData< FEMDegree >::UpSampleSize ; j++ ) for( int k=0 ; k<BSplineEvaluationData< FEMDegree >::UpSampleSize ; k++ )
upSampleStencil.values[i][j][k] =
upSampleEvaluator.value( lowCenter , 2*lowCenter + i + BSplineEvaluationData< FEMDegree >::UpSampleStart ) *
upSampleEvaluator.value( lowCenter , 2*lowCenter + j + BSplineEvaluationData< FEMDegree >::UpSampleStart ) *
upSampleEvaluator.value( lowCenter , 2*lowCenter + k + BSplineEvaluationData< FEMDegree >::UpSampleStart );
int dim = _Dimension< FEMDegree >(lowDepth);
// Iterate over all (valid) parent nodes
#pragma omp parallel for num_threads( threads )
for( int i=_sNodes.begin(lowDepth) ; i<_sNodes.end(lowDepth) ; i++ ) if( _IsValidNode< FEMDegree >( _sNodes.treeNodes[i] ) )
{
TreeOctNode* pNode = _sNodes.treeNodes[i];
UpSampleKey& neighborKey = neighborKeys[ omp_get_thread_num() ];
int d , off[3];
pNode->depthAndOffset( d , off );
neighborKey.template getNeighbors< false >( pNode );
// Get the child neighbors
typename TreeOctNode::Neighbors< BSplineEvaluationData< FEMDegree >::UpSampleSize > neighbors;
neighborKey.template getChildNeighbors< false >( 0 , d , neighbors );
C& coarseConstraint = constraints[i];
// Want to make sure test if contained children are interior.
// This is more conservative because we are test that overlapping children are interior
bool isInterior = _IsInteriorlyOverlapped< FEMDegree , FEMDegree >( pNode );
if( isInterior )
{
for( int ii=0 ; ii<BSplineEvaluationData< FEMDegree >::UpSampleSize ; ii++ ) for( int jj=0 ; jj<BSplineEvaluationData< FEMDegree >::UpSampleSize ; jj++ ) for( int kk=0 ; kk<BSplineEvaluationData< FEMDegree >::UpSampleSize ; kk++ )
{
const TreeOctNode* cNode = neighbors.neighbors[ii][jj][kk];
if( cNode ) coarseConstraint += (C)( constraints[ cNode->nodeData.nodeIndex ] * upSampleStencil.values[ii][jj][kk] );
}
}
else
{
double upSampleValues[3][ BSplineEvaluationData< FEMDegree >::UpSampleSize ];
for( int ii=0 ; ii<BSplineEvaluationData< FEMDegree >::UpSampleSize ; ii++ )
{
upSampleValues[0][ii] = upSampleEvaluator.value( off[0] , 2*off[0] + ii + BSplineEvaluationData< FEMDegree >::UpSampleStart );
upSampleValues[1][ii] = upSampleEvaluator.value( off[1] , 2*off[1] + ii + BSplineEvaluationData< FEMDegree >::UpSampleStart );
upSampleValues[2][ii] = upSampleEvaluator.value( off[2] , 2*off[2] + ii + BSplineEvaluationData< FEMDegree >::UpSampleStart );
}
for( int ii=0 ; ii<BSplineEvaluationData< FEMDegree >::UpSampleSize ; ii++ ) for( int jj=0 ; jj<BSplineEvaluationData< FEMDegree >::UpSampleSize ; jj++ )
{
double dxy = upSampleValues[0][ii] * upSampleValues[1][jj];
for( int kk=0 ; kk<BSplineEvaluationData< FEMDegree >::UpSampleSize ; kk++ )
{
const TreeOctNode* cNode = neighbors.neighbors[ii][jj][kk];
if( _IsValidNode< FEMDegree >( cNode ) ) coarseConstraint += (C)( constraints[ cNode->nodeData.nodeIndex ] * dxy * upSampleValues[2][kk] );
}
}
}
}
}
template< class Real >
template< class C , int FEMDegree>
void Octree< Real >::_UpSample( int highDepth , DenseNodeData< C , FEMDegree >& coefficients ) const
{
static const int LeftDownSampleRadius = -( ( BSplineEvaluationData< FEMDegree >::DownSample0Start < BSplineEvaluationData< FEMDegree >::DownSample1Start ) ? BSplineEvaluationData< FEMDegree >::DownSample0Start : BSplineEvaluationData< FEMDegree >::DownSample1Start );
static const int RightDownSampleRadius = ( ( BSplineEvaluationData< FEMDegree >::DownSample0End > BSplineEvaluationData< FEMDegree >::DownSample1End ) ? BSplineEvaluationData< FEMDegree >::DownSample0End : BSplineEvaluationData< FEMDegree >::DownSample1End );
typedef TreeOctNode::NeighborKey< LeftDownSampleRadius , RightDownSampleRadius > DownSampleKey;
int lowDepth = highDepth-1;
if( lowDepth<_minDepth ) return;
typename BSplineEvaluationData< FEMDegree >::UpSampleEvaluator upSampleEvaluator;
BSplineEvaluationData< FEMDegree >::SetUpSampleEvaluator( upSampleEvaluator , lowDepth-1 , _dirichlet );
std::vector< DownSampleKey > neighborKeys( std::max< int >( 1 , threads ) );
for( size_t i=0 ; i<neighborKeys.size() ; i++ ) neighborKeys[i].set( lowDepth );
static const int DownSampleSize = BSplineEvaluationData< FEMDegree >::DownSample0Size > BSplineEvaluationData< FEMDegree >::DownSample1Size ? BSplineEvaluationData< FEMDegree >::DownSample0Size : BSplineEvaluationData< FEMDegree >::DownSample1Size;
Stencil< double , DownSampleSize > downSampleStencils[ Cube::CORNERS ];
int lowCenter = _Dimension< FEMDegree >( lowDepth )>>1;
for( int c=0 ; c<Cube::CORNERS ; c++ )
{
int cx , cy , cz;
Cube::FactorCornerIndex( c , cx , cy , cz );
for( int ii=0 ; ii<BSplineEvaluationData< FEMDegree >::DownSampleSize[cx] ; ii++ )
for( int jj=0 ; jj<BSplineEvaluationData< FEMDegree >::DownSampleSize[cy] ; jj++ )
for( int kk=0 ; kk<BSplineEvaluationData< FEMDegree >::DownSampleSize[cz] ; kk++ )
downSampleStencils[c].values[ii][jj][kk] =
upSampleEvaluator.value( lowCenter + ii + BSplineEvaluationData< FEMDegree >::DownSampleStart[cx] , 2*lowCenter + cx ) *
upSampleEvaluator.value( lowCenter + jj + BSplineEvaluationData< FEMDegree >::DownSampleStart[cy] , 2*lowCenter + cy ) *
upSampleEvaluator.value( lowCenter + kk + BSplineEvaluationData< FEMDegree >::DownSampleStart[cz] , 2*lowCenter + cz ) ;
}
int dim = _Dimension< FEMDegree >( lowDepth );
// For Dirichlet constraints, can't get to all children from parents because boundary nodes are invalid
#pragma omp parallel for num_threads( threads )
for( int i=_sNodes.begin(highDepth) ; i<_sNodes.end(highDepth) ; i++ ) if( _IsValidNode< FEMDegree >( _sNodes.treeNodes[i] ) )
{
TreeOctNode *cNode = _sNodes.treeNodes[i] , *pNode = cNode->parent;
int c = (int)( cNode-pNode->children );
DownSampleKey& neighborKey = neighborKeys[ omp_get_thread_num() ];
int d , off[3];
pNode->depthAndOffset( d , off );
typename TreeOctNode::Neighbors< LeftDownSampleRadius + RightDownSampleRadius + 1 >& neighbors = neighborKey.template getNeighbors< false >( pNode );
// Want to make sure test if contained children are interior.
// This is more conservative because we are test that overlapping children are interior
bool isInterior = _IsInteriorlyOverlapped< FEMDegree , FEMDegree >( pNode );
C& fineCoefficient = coefficients[ cNode->nodeData.nodeIndex ];
int cx , cy , cz;
Cube::FactorCornerIndex( c , cx , cy , cz );
if( isInterior )
{
for( int ii=0 ; ii<BSplineEvaluationData< FEMDegree >::DownSampleSize[cx] ; ii++ ) for( int jj=0 ; jj<BSplineEvaluationData< FEMDegree >::DownSampleSize[cy] ; jj++ )
{
int _ii = ii + BSplineEvaluationData< FEMDegree >::DownSampleStart[cx] + LeftDownSampleRadius;
int _jj = jj + BSplineEvaluationData< FEMDegree >::DownSampleStart[cy] + LeftDownSampleRadius;
for( int kk=0 ; kk<BSplineEvaluationData< FEMDegree >::DownSampleSize[cz] ; kk++ )
{
int _kk = kk + BSplineEvaluationData< FEMDegree >::DownSampleStart[cz] + LeftDownSampleRadius;
const TreeOctNode* _pNode = neighbors.neighbors[_ii][_jj][_kk];
if( _pNode ) fineCoefficient += (C)( coefficients[ _pNode->nodeData.nodeIndex ] * downSampleStencils[c].values[ii][jj][kk] );
}
}
}
else
{
double downSampleValues[3][ BSplineEvaluationData< FEMDegree >::DownSample0Size > BSplineEvaluationData< FEMDegree >::DownSample1Size ? BSplineEvaluationData< FEMDegree >::DownSample0Size : BSplineEvaluationData< FEMDegree >::DownSample1Size ];
for( int ii=0 ; ii<BSplineEvaluationData< FEMDegree >::DownSampleSize[cx] ; ii++ ) downSampleValues[0][ii] = upSampleEvaluator.value( off[0] + ii + BSplineEvaluationData< FEMDegree >::DownSampleStart[cx] , 2*off[0] + cx );
for( int ii=0 ; ii<BSplineEvaluationData< FEMDegree >::DownSampleSize[cy] ; ii++ ) downSampleValues[1][ii] = upSampleEvaluator.value( off[1] + ii + BSplineEvaluationData< FEMDegree >::DownSampleStart[cy] , 2*off[1] + cy );
for( int ii=0 ; ii<BSplineEvaluationData< FEMDegree >::DownSampleSize[cz] ; ii++ ) downSampleValues[2][ii] = upSampleEvaluator.value( off[2] + ii + BSplineEvaluationData< FEMDegree >::DownSampleStart[cz] , 2*off[2] + cz );
for( int ii=0 ; ii<BSplineEvaluationData< FEMDegree >::DownSampleSize[cx] ; ii++ ) for( int jj=0 ; jj<BSplineEvaluationData< FEMDegree >::DownSampleSize[cy] ; jj++ )
{
double dxy = downSampleValues[0][ii] * downSampleValues[1][jj];
int _ii = ii + BSplineEvaluationData< FEMDegree >::DownSampleStart[cx] + LeftDownSampleRadius;
int _jj = jj + BSplineEvaluationData< FEMDegree >::DownSampleStart[cy] + LeftDownSampleRadius;
for( int kk=0 ; kk<BSplineEvaluationData< FEMDegree >::DownSampleSize[cz] ; kk++ )
{
int _kk = kk + BSplineEvaluationData< FEMDegree >::DownSampleStart[cz] + LeftDownSampleRadius;
const TreeOctNode* _pNode = neighbors.neighbors[_ii][_jj][_kk];
if( _IsValidNode< FEMDegree >( _pNode ) ) fineCoefficient += (C)( coefficients[ _pNode->nodeData.nodeIndex ] * dxy * downSampleValues[2][kk] );
}
}
}
}
}
template< class Real >
template< class C , int FEMDegree >
void Octree< Real >::_UpSample( int highDepth , ConstPointer( C ) lowCoefficients , Pointer( C ) highCoefficients , bool dirichlet , int threads )
{
static const int LeftDownSampleRadius = -( ( BSplineEvaluationData< FEMDegree >::DownSample0Start < BSplineEvaluationData< FEMDegree >::DownSample1Start ) ? BSplineEvaluationData< FEMDegree >::DownSample0Start : BSplineEvaluationData< FEMDegree >::DownSample1Start );
static const int RightDownSampleRadius = ( ( BSplineEvaluationData< FEMDegree >::DownSample0End > BSplineEvaluationData< FEMDegree >::DownSample1End ) ? BSplineEvaluationData< FEMDegree >::DownSample0End : BSplineEvaluationData< FEMDegree >::DownSample1End );
typedef TreeOctNode::NeighborKey< LeftDownSampleRadius , RightDownSampleRadius > DownSampleKey;
int lowDepth = highDepth-1;
if( lowDepth<1 ) return;
typename BSplineEvaluationData< FEMDegree >::UpSampleEvaluator upSampleEvaluator;
BSplineEvaluationData< FEMDegree >::SetUpSampleEvaluator( upSampleEvaluator , lowDepth-1 , dirichlet );
std::vector< DownSampleKey > neighborKeys( std::max< int >( 1 , threads ) );
static const int DownSampleSize = BSplineEvaluationData< FEMDegree >::DownSample0Size > BSplineEvaluationData< FEMDegree >::DownSample1Size ? BSplineEvaluationData< FEMDegree >::DownSample0Size : BSplineEvaluationData< FEMDegree >::DownSample1Size;
Stencil< double , DownSampleSize > downSampleStencils[ Cube::CORNERS ];
int lowCenter = _Dimension< FEMDegree >( lowDepth )>>1;
for( int c=0 ; c<Cube::CORNERS ; c++ )
{
int cx , cy , cz;
Cube::FactorCornerIndex( c , cx , cy , cz );
for( int ii=0 ; ii<BSplineEvaluationData< FEMDegree >::DownSampleSize[cx] ; ii++ )
for( int jj=0 ; jj<BSplineEvaluationData< FEMDegree >::DownSampleSize[cy] ; jj++ )
for( int kk=0 ; kk<BSplineEvaluationData< FEMDegree >::DownSampleSize[cz] ; kk++ )
downSampleStencils[c].values[ii][jj][kk] =
upSampleEvaluator.value( lowCenter + ii + BSplineEvaluationData< FEMDegree >::DownSampleStart[cx] , 2*lowCenter + cx ) *
upSampleEvaluator.value( lowCenter + jj + BSplineEvaluationData< FEMDegree >::DownSampleStart[cy] , 2*lowCenter + cy ) *
upSampleEvaluator.value( lowCenter + kk + BSplineEvaluationData< FEMDegree >::DownSampleStart[cz] , 2*lowCenter + cz ) ;
}
int lowDim = _Dimension< FEMDegree >( lowDepth ) , highDim = _Dimension< FEMDegree >( highDepth );
// Iterate over all parent nodes
#pragma omp parallel for num_threads( threads )
for( int k=0 ; k<lowDim ; k++ ) for( int j=0 ; j<lowDim ; j++ ) for( int i=0 ; i<lowDim ; i++ )
{
DownSampleKey& neighborKey = neighborKeys[ omp_get_thread_num() ];
int off[] = { i , j , k } , lowIdx = i + j * lowDim + k * lowDim * lowDim;
// Want to make sure test if contained children are interior.
// This is more conservative because we are test that overlapping children are interior
bool isInterior = _IsInteriorlyOverlapped< FEMDegree , FEMDegree >( lowDepth , i , j , k );
// Iterate over all the children of the parent
for( int c=0 ; c<Cube::CORNERS ; c++ )
{
int cx , cy , cz;
Cube::FactorCornerIndex( c , cx , cy , cz );
// For odd degrees not all children are valid
int ii = (i<<1)|cx , jj = (j<<1)|cy , kk = (k<<1)|cz;
if( ii<0 || ii>=highDim || jj<0 || jj>=highDim || kk<0 || kk>=highDim ) continue;
C& highCoefficient = highCoefficients[ ii + jj*highDim + kk*highDim*highDim ];
if( isInterior )
{
for( int ii=0 ; ii<BSplineEvaluationData< FEMDegree >::DownSampleSize[cx] ; ii++ ) for( int jj=0 ; jj<BSplineEvaluationData< FEMDegree >::DownSampleSize[cy] ; jj++ )
{
int _i = i + ii + BSplineEvaluationData< FEMDegree >::DownSampleStart[cx];
int _j = j + jj + BSplineEvaluationData< FEMDegree >::DownSampleStart[cy];
for( int kk=0 ; kk<BSplineEvaluationData< FEMDegree >::DownSampleSize[cz] ; kk++ )
{
int _k = k + kk + BSplineEvaluationData< FEMDegree >::DownSampleStart[cz];
highCoefficient += (C)( lowCoefficients[ _i + _j*lowDim + _k*lowDim*lowDim ] * downSampleStencils[c].values[ii][jj][kk] );
}
}
}
else
{
double downSampleValues[3][ BSplineEvaluationData< FEMDegree >::DownSample0Size > BSplineEvaluationData< FEMDegree >::DownSample1Size ? BSplineEvaluationData< FEMDegree >::DownSample0Size : BSplineEvaluationData< FEMDegree >::DownSample1Size ];
for( int ii=0 ; ii<BSplineEvaluationData< FEMDegree >::DownSampleSize[cx] ; ii++ ) downSampleValues[0][ii] = upSampleEvaluator.value( off[0] + ii + BSplineEvaluationData< FEMDegree >::DownSampleStart[cx] , 2*off[0] + cx );
for( int ii=0 ; ii<BSplineEvaluationData< FEMDegree >::DownSampleSize[cy] ; ii++ ) downSampleValues[1][ii] = upSampleEvaluator.value( off[1] + ii + BSplineEvaluationData< FEMDegree >::DownSampleStart[cy] , 2*off[1] + cy );
for( int ii=0 ; ii<BSplineEvaluationData< FEMDegree >::DownSampleSize[cz] ; ii++ ) downSampleValues[2][ii] = upSampleEvaluator.value( off[2] + ii + BSplineEvaluationData< FEMDegree >::DownSampleStart[cz] , 2*off[2] + cz );
for( int ii=0 ; ii<BSplineEvaluationData< FEMDegree >::DownSampleSize[cx] ; ii++ ) for( int jj=0 ; jj<BSplineEvaluationData< FEMDegree >::DownSampleSize[cy] ; jj++ )
{
double dxy = downSampleValues[0][ii] * downSampleValues[1][jj];
int _i = i + ii + BSplineEvaluationData< FEMDegree >::DownSampleStart[cx];
int _j = j + jj + BSplineEvaluationData< FEMDegree >::DownSampleStart[cy];
if( _i>=0 && _i<lowDim && _j>=0 && _j<lowDim )
for( int kk=0 ; kk<BSplineEvaluationData< FEMDegree >::DownSampleSize[cz] ; kk++ )
{
int _k = k + kk + BSplineEvaluationData< FEMDegree >::DownSampleStart[cz];
if( _k>=0 && _k<lowDim ) highCoefficient += (C)( lowCoefficients[ _i + _j*lowDim + _k*lowDim*lowDim ] * dxy * downSampleValues[2][kk] );
}
}
}
}
}
}
template< class Real >
template< int FEMDegree >
Real Octree< Real >::_CoarserFunctionValue( Point3D< Real > p , const PointSupportKey< FEMDegree >& neighborKey , const TreeOctNode* pointNode , const BSplineData< FEMDegree >& bsData , const DenseNodeData< Real , FEMDegree >& upSampledCoefficients ) const
{
static const int SupportSize = BSplineEvaluationData< FEMDegree >::SupportSize;
static const int LeftSupportRadius = - BSplineEvaluationData< FEMDegree >::SupportStart;
static const int RightSupportRadius = BSplineEvaluationData< FEMDegree >::SupportEnd;
static const int LeftPointSupportRadius = BSplineEvaluationData< FEMDegree >::SupportEnd;
static const int RightPointSupportRadius = - BSplineEvaluationData< FEMDegree >::SupportStart;
double pointValue = 0;
int depth = pointNode->depth();
if( depth<=_minDepth ) return Real(0.);
// Iterate over all basis functions that overlap the point at the coarser resolution
{
const typename TreeOctNode::Neighbors< SupportSize >& neighbors = neighborKey.neighbors[depth-1];
int _d , _off[3];
pointNode->parent->depthAndOffset( _d , _off );
int fStart , fEnd;
BSplineData< FEMDegree >::FunctionSpan( _d-1 , fStart , fEnd );
double pointValues[ DIMENSION ][SupportSize];
memset( pointValues , 0 , sizeof(double) * DIMENSION * SupportSize );
for( int dd=0 ; dd<DIMENSION ; dd++ ) for( int i=-LeftPointSupportRadius ; i<=RightPointSupportRadius ; i++ )
{
int fIdx = BSplineData< FEMDegree >::FunctionIndex( _d-1 , _off[dd]+i );
if( fIdx>=fStart && fIdx<fEnd ) pointValues[dd][i+LeftPointSupportRadius] = bsData.baseBSplines[ fIdx ][LeftSupportRadius-i]( p[dd] );
}
for( int j=0 ; j<SupportSize ; j++ ) for( int k=0 ; k<SupportSize ; k++ )
{
double xyValue = pointValues[0][j] * pointValues[1][k];
double _pointValue = 0;
for( int l=0 ; l<SupportSize ; l++ )
{
const TreeOctNode* _node = neighbors.neighbors[j][k][l];
if( _IsValidNode< FEMDegree >( _node ) ) _pointValue += pointValues[2][l] * double( upSampledCoefficients[_node->nodeData.nodeIndex] );
}
pointValue += _pointValue * xyValue;
}
}
return Real( pointValue );
}
template< class Real >
template< int FEMDegree >
Real Octree< Real >::_FinerFunctionValue( Point3D< Real > p , const PointSupportKey< FEMDegree >& neighborKey , const TreeOctNode* pointNode , const BSplineData< FEMDegree >& bsData , const DenseNodeData< Real , FEMDegree >& finerCoefficients ) const
{
typename TreeOctNode::Neighbors< BSplineEvaluationData< FEMDegree >::SupportSize > childNeighbors;
static const int LeftPointSupportRadius = BSplineEvaluationData< FEMDegree >::SupportEnd;
static const int RightPointSupportRadius = -BSplineEvaluationData< FEMDegree >::SupportStart;
static const int LeftSupportRadius = -BSplineEvaluationData< FEMDegree >::SupportStart;
static const int RightSupportRadius = BSplineEvaluationData< FEMDegree >::SupportEnd;
double pointValue = 0;
int depth = pointNode->depth();
neighborKey.template getChildNeighbors< false >( p , depth , childNeighbors );
for( int j=-LeftPointSupportRadius ; j<=RightPointSupportRadius ; j++ )
for( int k=-LeftPointSupportRadius ; k<=RightPointSupportRadius ; k++ )
for( int l=-LeftPointSupportRadius ; l<=RightPointSupportRadius ; l++ )
{
const TreeOctNode* _node = childNeighbors.neighbors[j+LeftPointSupportRadius][k+LeftPointSupportRadius][l+LeftPointSupportRadius];
if( _IsValidNode< FEMDegree >( _node ) )
{
int fIdx[3];
FunctionIndex< FEMDegree >( _node , fIdx );
pointValue +=
bsData.baseBSplines[ fIdx[0] ][LeftSupportRadius-j]( p[0] ) *
bsData.baseBSplines[ fIdx[1] ][LeftSupportRadius-k]( p[1] ) *
bsData.baseBSplines[ fIdx[2] ][LeftSupportRadius-l]( p[2] ) *
double( finerCoefficients[ _node->nodeData.nodeIndex ] );
}
}
return Real( pointValue );
}
template< class Real >
template< int FEMDegree >
void Octree< Real >::_SetPointValuesFromCoarser( SparseNodeData< PointData< Real > , 0 >& pointInfo , int highDepth , const BSplineData< FEMDegree >& bsData , const DenseNodeData< Real , FEMDegree >& upSampledCoefficients )
{
int lowDepth = highDepth-1;
if( lowDepth<_minDepth ) return;
std::vector< PointData< Real > >& points = pointInfo.data;
std::vector< PointSupportKey< FEMDegree > > neighborKeys( std::max< int >( 1 , threads ) );
for( size_t i=0 ; i<neighborKeys.size() ; i++ ) neighborKeys[i].set( lowDepth );
#pragma omp parallel for num_threads( threads )
for( int i=_sNodes.begin(highDepth) ; i<_sNodes.end(highDepth) ; i++ ) if( _IsValidNode< FEMDegree >( _sNodes.treeNodes[i] ) )
{
PointSupportKey< FEMDegree >& neighborKey = neighborKeys[ omp_get_thread_num() ];
int pIdx = pointInfo.index( _sNodes.treeNodes[i] );
if( pIdx!=-1 )
{
neighborKey.template getNeighbors< false >( _sNodes.treeNodes[i]->parent );
points[ pIdx ].weightedCoarserDValue = (Real)( _CoarserFunctionValue( points[pIdx].position , neighborKey , _sNodes.treeNodes[i] , bsData , upSampledCoefficients ) - 0.5 ) * points[pIdx].weight;
}
}
}
template< class Real >
template< int FEMDegree >
void Octree< Real >::_SetPointConstraintsFromFiner( const SparseNodeData< PointData< Real > , 0 >& pointInfo , int highDepth , const BSplineData< FEMDegree >& bsData , const DenseNodeData< Real , FEMDegree >& finerCoefficients , DenseNodeData< Real , FEMDegree >& coarserConstraints ) const
{
static const int SupportSize = BSplineEvaluationData< FEMDegree >::SupportSize;
static const int LeftPointSupportRadius = BSplineEvaluationData< FEMDegree >::SupportEnd;
static const int RightPointSupportRadius = -BSplineEvaluationData< FEMDegree >::SupportStart;
static const int LeftSupportRadius = -BSplineEvaluationData< FEMDegree >::SupportStart;
static const int RightSupportRadius = BSplineEvaluationData< FEMDegree >::SupportEnd;
const std::vector< PointData< Real > >& points = pointInfo.data;
// Note: We can't iterate over the finer point nodes as the point weights might be
// scaled incorrectly, due to the adaptive exponent. So instead, we will iterate
// over the coarser nodes and evaluate the finer solution at the associated points.
int lowDepth = highDepth-1;
if( lowDepth<_minDepth ) return;
size_t start = _sNodes.begin(lowDepth) , end = _sNodes.end(lowDepth) , range = end-start;
memset( coarserConstraints.data+start , 0 , sizeof( Real ) * range );
std::vector< PointSupportKey< FEMDegree > > neighborKeys( std::max< int >( 1 , threads ) );
for( size_t i=0 ; i<neighborKeys.size() ; i++ ) neighborKeys[i].set( lowDepth );
#pragma omp parallel for num_threads( threads )
for( int i=_sNodes.begin(lowDepth) ; i<_sNodes.end(lowDepth) ; i++ ) if( _IsValidNode< FEMDegree >( _sNodes.treeNodes[i] ) )
{
PointSupportKey< FEMDegree >& neighborKey = neighborKeys[ omp_get_thread_num() ];
int pIdx = pointInfo.index( _sNodes.treeNodes[i] );
if( pIdx!=-1 )
{
typename TreeOctNode::Neighbors< SupportSize >& neighbors = neighborKey.template getNeighbors< false >( _sNodes.treeNodes[i] );
// Evaluate the solution @( depth ) at the current point @( depth-1 )
{
Real finerPointDValue = (Real)( _FinerFunctionValue( points[pIdx].position , neighborKey , _sNodes.treeNodes[i] , bsData , finerCoefficients ) - 0.5 ) * points[pIdx].weight;
Point3D< Real > p = points[ pIdx ].position;
// Update constraints for all nodes @( depth-1 ) that overlap the point
int d , idx[3];
neighbors.neighbors[LeftPointSupportRadius][LeftPointSupportRadius][LeftPointSupportRadius]->depthAndOffset( d, idx );
// Set the (offset) index to the top-left-front corner of the 3x3x3 block of b-splines
// overlapping the point.
idx[0] = BinaryNode::CenterIndex( d , idx[0] );
idx[1] = BinaryNode::CenterIndex( d , idx[1] );
idx[2] = BinaryNode::CenterIndex( d , idx[2] );
for( int x=-LeftPointSupportRadius ; x<=RightPointSupportRadius ; x++ )
for( int y=-LeftPointSupportRadius ; y<=RightPointSupportRadius ; y++ )
for( int z=-LeftPointSupportRadius ; z<=RightPointSupportRadius ; z++ )
if( _IsValidNode< FEMDegree >( neighbors.neighbors[x+LeftPointSupportRadius][y+LeftPointSupportRadius][z+LeftPointSupportRadius] ) )
{
#pragma omp atomic
coarserConstraints[ neighbors.neighbors[x+LeftPointSupportRadius][y+LeftPointSupportRadius][z+LeftPointSupportRadius]->nodeData.nodeIndex - _sNodes.begin(lowDepth) ] +=
Real(
bsData.baseBSplines[idx[0]+x][LeftSupportRadius-x]( p[0] ) *
bsData.baseBSplines[idx[1]+y][LeftSupportRadius-y]( p[1] ) *
bsData.baseBSplines[idx[2]+z][LeftSupportRadius-z]( p[2] ) *
finerPointDValue
);
}
}
}
}
}
template< class Real >
template< int FEMDegree >
int Octree< Real >::_SetMatrixRow( const SparseNodeData< PointData< Real > , 0 >& pointInfo , const typename TreeOctNode::Neighbors< BSplineIntegrationData< FEMDegree , FEMDegree >::OverlapSize >& neighbors , Pointer( MatrixEntry< Real > ) row , int offset , const typename BSplineIntegrationData< FEMDegree , FEMDegree >::FunctionIntegrator::Integrator& integrator , const Stencil< double , BSplineIntegrationData< FEMDegree , FEMDegree >::OverlapSize >& stencil , const BSplineData< FEMDegree >& bsData ) const
{
static const int SupportSize = BSplineEvaluationData< FEMDegree >::SupportSize;
static const int OverlapRadius = - BSplineIntegrationData< FEMDegree , FEMDegree >::OverlapStart;
static const int OverlapSize = BSplineIntegrationData< FEMDegree , FEMDegree >::OverlapSize;
static const int LeftSupportRadius = -BSplineEvaluationData< FEMDegree >::SupportStart;
static const int RightSupportRadius = BSplineEvaluationData< FEMDegree >::SupportEnd;
static const int LeftPointSupportRadius = BSplineEvaluationData< FEMDegree >::SupportEnd;
static const int RightPointSupportRadius = -BSplineEvaluationData< FEMDegree >::SupportStart;
const std::vector< PointData< Real > >& points = pointInfo.data;
bool hasYZPoints[SupportSize] , hasZPoints[SupportSize][SupportSize];
Real diagonal = 0;
// Given a node:
// -- for each node in its support:
// ---- if the supporting node contains a point:
// ------ evaluate the x, y, and z B-splines of the nodes supporting the point
// splineValues \in [-LeftSupportRadius,RightSupportRadius] x [-LeftSupportRadius,RightSupportRadius] x [-LeftSupportRadius,RightSupportRadius] x [0,Dimension) x [-LeftPointSupportRadius,RightPointSupportRadius]
Real splineValues[SupportSize][SupportSize][SupportSize][DIMENSION][SupportSize];
memset( splineValues , 0 , sizeof( Real ) * SupportSize * SupportSize * SupportSize * DIMENSION *SupportSize );
int count = 0;
const TreeOctNode* node = neighbors.neighbors[OverlapRadius][OverlapRadius][OverlapRadius];
int d , off[3];
node->depthAndOffset( d , off );
int fStart , fEnd;
BSplineData< FEMDegree >::FunctionSpan( d-1 , fStart , fEnd );
bool isInterior = _IsInteriorlyOverlapped< FEMDegree , FEMDegree >( node );
if( _constrainValues )
{
// Iterate over all neighboring nodes that may have a constraining point
// -- For each one, compute the values of the spline functions supported on the point
for( int j=0 ; j<SupportSize ; j++ )
{
hasYZPoints[j] = false;
for( int k=0 ; k<SupportSize ; k++ ) hasZPoints[j][k] = false;
}
for( int j=-LeftSupportRadius , jj=0 ; j<=RightSupportRadius ; j++ , jj++ )
for( int k=-LeftSupportRadius , kk=0 ; k<=RightSupportRadius ; k++ , kk++ )
for( int l=-LeftSupportRadius , ll=0 ; l<=RightSupportRadius ; l++ , ll++ )
{
const TreeOctNode* _node = neighbors.neighbors[OverlapRadius+j][OverlapRadius+k][OverlapRadius+l];
if( _IsValidNode< 0 >( _node ) && pointInfo.index( _node )!=-1 )
{
int pOff[] = { off[0]+j , off[1]+k , off[2]+l };
hasYZPoints[jj] = hasZPoints[jj][kk] = true;
const PointData< Real >& pData = points[ pointInfo.index( _node ) ];
Real (*_splineValues)[SupportSize] = splineValues[jj][kk][ll];
Real weight = pData.weight;
Point3D< Real > p = pData.position;
// Evaluate the point p at all the nodes whose functions have it in their support
for( int s=-LeftPointSupportRadius ; s<=RightPointSupportRadius ; s++ ) for( int dd=0 ; dd<DIMENSION ; dd++ )
{
int fIdx = BSplineData< FEMDegree >::FunctionIndex( d-1 , pOff[dd]+s );
if( fIdx>=fStart && fIdx<fEnd ) _splineValues[dd][ s+LeftPointSupportRadius ] = Real( bsData.baseBSplines[ fIdx ][ -s+LeftSupportRadius ]( p[dd] ) );
}
// The value of the function of the node that we started with
Real value = _splineValues[0][-j+LeftPointSupportRadius] * _splineValues[1][-k+LeftPointSupportRadius] * _splineValues[2][-l+LeftPointSupportRadius];
Real weightedValue = value * weight;
diagonal += value * weightedValue;
// Pre-multiply the x-coordinate values so that when we evaluate at one of the neighboring basis functions
// we get the product of the values of the center base function and the base function of the neighboring node
for( int s=0 ; s<SupportSize ; s++ ) _splineValues[0][s] *= weightedValue;
}
}
}
Real pointValues[OverlapSize][OverlapSize][OverlapSize];
if( _constrainValues )
{
memset( pointValues , 0 , sizeof(Real) * OverlapSize * OverlapSize * OverlapSize );
// Iterate over all supported neighbors that could have a point constraint
for( int i=-LeftSupportRadius ; i<=RightSupportRadius ; i++ ) if( hasYZPoints[i+LeftSupportRadius] )
for( int j=-LeftSupportRadius ; j<=RightSupportRadius ; j++ ) if( hasZPoints[i+LeftSupportRadius][j+LeftSupportRadius] )
for( int k=-LeftSupportRadius ; k<=RightSupportRadius ; k++ )
{
const TreeOctNode* _node = neighbors.neighbors[i+OverlapRadius][j+OverlapRadius][k+OverlapRadius];
Real (*_splineValues)[SupportSize] = splineValues[i+LeftSupportRadius][j+LeftSupportRadius][k+LeftSupportRadius];
if( _IsValidNode< 0 >( _node ) && pointInfo.index( _node )!=-1 )
// Iterate over all neighbors whose support contains the point and accumulate the mutual integral
for( int ii=-LeftPointSupportRadius ; ii<=RightPointSupportRadius ; ii++ )
for( int jj=-LeftPointSupportRadius ; jj<=RightPointSupportRadius ; jj++ )
for( int kk=-LeftPointSupportRadius ; kk<=RightPointSupportRadius ; kk++ )
{
TreeOctNode* _node = neighbors.neighbors[i+ii+OverlapRadius][j+jj+OverlapRadius][k+kk+OverlapRadius];
if( _IsValidNode< FEMDegree >( _node ) )
pointValues[i+ii+OverlapRadius][j+jj+OverlapRadius][k+kk+OverlapRadius] +=
_splineValues[0][ii+LeftPointSupportRadius ] * _splineValues[1][jj+LeftPointSupportRadius ] * _splineValues[2][kk+LeftPointSupportRadius ];
}
}
}
pointValues[OverlapRadius][OverlapRadius][OverlapRadius] = diagonal;
int nodeIndex = neighbors.neighbors[OverlapRadius][OverlapRadius][OverlapRadius]->nodeData.nodeIndex;
if( isInterior ) // General case, so try to make fast
{
const TreeOctNode* const * _nodes = &neighbors.neighbors[0][0][0];
const double* _stencil = &stencil.values[0][0][0];
Real* _values = &pointValues[0][0][0];
const static int CenterIndex = OverlapSize*OverlapSize*OverlapRadius + OverlapSize*OverlapRadius + OverlapRadius;
if( _constrainValues ) for( int i=0 ; i<OverlapSize*OverlapSize*OverlapSize ; i++ ) _values[i] = Real( _stencil[i] + _values[i] );
else for( int i=0 ; i<OverlapSize*OverlapSize*OverlapSize ; i++ ) _values[i] = Real( _stencil[i] );
row[count++] = MatrixEntry< Real >( nodeIndex-offset , _values[CenterIndex] );
for( int i=0 ; i<OverlapSize*OverlapSize*OverlapSize ; i++ ) if( i!=CenterIndex && _nodes[i] )
row[count++] = MatrixEntry< Real >( _nodes[i]->nodeData.nodeIndex-offset , _values[i] );
}
else
{
int d , off[3];
node->depthAndOffset( d , off );
Real temp = Real( SystemCoefficients< FEMDegree , FEMDegree >::GetLaplacian( integrator , off , off ) );
if( _constrainValues ) temp += pointValues[OverlapRadius][OverlapRadius][OverlapRadius];
row[count++] = MatrixEntry< Real >( nodeIndex-offset , temp );
for( int x=0 ; x<OverlapSize ; x++ ) for( int y=0 ; y<OverlapSize ; y++ ) for( int z=0 ; z<OverlapSize ; z++ )
if( (x!=OverlapRadius || y!=OverlapRadius || z!=OverlapRadius) && _IsValidNode< FEMDegree >( neighbors.neighbors[x][y][z] ) )
{
const TreeOctNode* _node = neighbors.neighbors[x][y][z];
int _d , _off[3];
_node->depthAndOffset( _d , _off );
Real temp = Real( SystemCoefficients< FEMDegree , FEMDegree >::GetLaplacian( integrator , _off , off ) );
if( _constrainValues ) temp += pointValues[x][y][z];
row[count++] = MatrixEntry< Real >( _node->nodeData.nodeIndex-offset , temp );
}
}
return count;
}
template< class Real >
template< int FEMDegree >
int Octree< Real >::_GetMatrixAndUpdateConstraints( const SparseNodeData< PointData< Real > , 0 >& pointInfo , SparseMatrix< Real >& matrix , DenseNodeData< Real , FEMDegree >& constraints , typename BSplineIntegrationData< FEMDegree , FEMDegree >::FunctionIntegrator::Integrator& integrator , typename BSplineIntegrationData< FEMDegree , FEMDegree >::FunctionIntegrator::ChildIntegrator& childIntegrator , const BSplineData< FEMDegree >& bsData , int depth , const DenseNodeData< Real , FEMDegree >* metSolution , bool coarseToFine )
{
static const int OverlapRadius = - BSplineIntegrationData< FEMDegree , FEMDegree >::OverlapStart;
static const int OverlapSize = BSplineIntegrationData< FEMDegree , FEMDegree >::OverlapSize;
size_t start = _sNodes.begin(depth) , end = _sNodes.end(depth) , range = end-start;
Stencil< double , OverlapSize > stencil , stencils[2][2][2];
SystemCoefficients< FEMDegree , FEMDegree >::SetCentralLaplacianStencil ( integrator , stencil );
SystemCoefficients< FEMDegree , FEMDegree >::SetCentralLaplacianStencils( childIntegrator , stencils );
matrix.Resize( (int)range );
std::vector< AdjacenctNodeKey > neighborKeys( std::max< int >( 1 , threads ) );
for( size_t i=0 ; i<neighborKeys.size() ; i++ ) neighborKeys[i].set( depth );
#pragma omp parallel for num_threads( threads )
for( int i=0 ; i<(int)range ; i++ ) if( _IsValidNode< FEMDegree >( _sNodes.treeNodes[i+start] ) )
{
AdjacenctNodeKey& neighborKey = neighborKeys[ omp_get_thread_num() ];
TreeOctNode* node = _sNodes.treeNodes[i+start];
// Get the matrix row size
typename TreeOctNode::Neighbors< OverlapSize > neighbors;
neighborKey.template getNeighbors< false , OverlapRadius , OverlapRadius >( node , neighbors );
int count = _GetMatrixRowSize< FEMDegree >( neighbors );
// Allocate memory for the row
#pragma omp critical (matrix_set_row_size)
matrix.SetRowSize( i , count );
// Set the row entries
matrix.rowSizes[i] = _SetMatrixRow( pointInfo , neighbors , matrix[i] , (int)start , integrator , stencil , bsData );
if( depth>_minDepth )
{
// Offset the constraints using the solution from lower resolutions.
int x , y , z , c;
if( node->parent )
{
c = int( node - node->parent->children );
Cube::FactorCornerIndex( c , x , y , z );
}
else x = y = z = 0;
if( coarseToFine )
{
typename TreeOctNode::Neighbors< OverlapSize > pNeighbors;
neighborKey.template getNeighbors< false , OverlapRadius , OverlapRadius >( node->parent , pNeighbors );
_UpdateConstraintsFromCoarser( pointInfo , neighbors , pNeighbors , node , constraints , *metSolution , childIntegrator , stencils[x][y][z] , bsData );
}
}
}
return 1;
}
template< class Real >
template< int FEMDegree >
int Octree< Real >::_GetSliceMatrixAndUpdateConstraints( const SparseNodeData< PointData< Real > , 0 >& pointInfo , SparseMatrix< Real >& matrix , DenseNodeData< Real , FEMDegree >& constraints , typename BSplineIntegrationData< FEMDegree , FEMDegree >::FunctionIntegrator::Integrator& integrator , typename BSplineIntegrationData< FEMDegree , FEMDegree >::FunctionIntegrator::ChildIntegrator& childIntegrator , const BSplineData< FEMDegree >& bsData , int depth , int slice , const DenseNodeData< Real , FEMDegree >& metSolution , bool coarseToFine )
{
static const int OverlapSize = BSplineIntegrationData< FEMDegree , FEMDegree >::OverlapSize;
static const int OverlapRadius = -BSplineIntegrationData< FEMDegree , FEMDegree >::OverlapStart;
int nStart = _sNodes.begin( depth , slice ) , nEnd = _sNodes.end( depth , slice );
size_t range = nEnd-nStart;
Stencil< double , OverlapSize > stencil , stencils[2][2][2];
SystemCoefficients< FEMDegree , FEMDegree >::SetCentralLaplacianStencil ( integrator , stencil );
SystemCoefficients< FEMDegree , FEMDegree >::SetCentralLaplacianStencils( childIntegrator , stencils );
matrix.Resize( (int)range );
std::vector< AdjacenctNodeKey > neighborKeys( std::max< int >( 1 , threads ) );
for( size_t i=0 ; i<neighborKeys.size() ; i++ ) neighborKeys[i].set( depth );
#pragma omp parallel for num_threads( threads )
for( int i=0 ; i<(int)range ; i++ ) if( _IsValidNode< FEMDegree >( _sNodes.treeNodes[i+nStart] ) )
{
AdjacenctNodeKey& neighborKey = neighborKeys[ omp_get_thread_num() ];
TreeOctNode* node = _sNodes.treeNodes[i+nStart];
// Get the matrix row size
typename TreeOctNode::Neighbors< OverlapSize > neighbors;
neighborKey.template getNeighbors< false , OverlapRadius , OverlapRadius >( node , neighbors );
int count = _GetMatrixRowSize< FEMDegree >( neighbors );
// Allocate memory for the row
#pragma omp critical (matrix_set_row_size)
{
matrix.SetRowSize( i , count );
}
// Set the row entries
matrix.rowSizes[i] = _SetMatrixRow( pointInfo , neighbors , matrix[i] , _sNodes.begin(depth,slice) , integrator , stencil , bsData );
if( depth>_minDepth )
{
// Offset the constraints using the solution from lower resolutions.
int x , y , z , c;
if( node->parent )
{
c = int( node - node->parent->children );
Cube::FactorCornerIndex( c , x , y , z );
}
else x = y = z = 0;
if( coarseToFine )
{
typename TreeOctNode::Neighbors< OverlapSize > pNeighbors;
neighborKey.template getNeighbors< false, OverlapRadius , OverlapRadius >( node->parent , pNeighbors );
_UpdateConstraintsFromCoarser( pointInfo , neighbors , pNeighbors , node , constraints , metSolution , childIntegrator , stencils[x][y][z] , bsData );
}
}
}
return 1;
}
template< class Real >
template< int FEMDegree >
int Octree< Real >::_SolveSystemGS( const BSplineData< FEMDegree >& bsData , SparseNodeData< PointData< Real > , 0 >& pointInfo , int depth , DenseNodeData< Real , FEMDegree >& solution , DenseNodeData< Real , FEMDegree >& constraints , DenseNodeData< Real , FEMDegree >& metSolutionConstraints , int iters , bool coarseToFine , bool showResidual , double* bNorm2 , double* inRNorm2 , double* outRNorm2 , bool forceSilent )
{
const int OverlapRadius = -BSplineIntegrationData< FEMDegree , FEMDegree >::OverlapStart;
typename BSplineIntegrationData< FEMDegree , FEMDegree >::FunctionIntegrator::Integrator integrator;
typename BSplineIntegrationData< FEMDegree , FEMDegree >::FunctionIntegrator::ChildIntegrator childIntegrator;
BSplineIntegrationData< FEMDegree , FEMDegree >::SetIntegrator( integrator , depth-1 , _dirichlet , _dirichlet );
if( depth>_minDepth ) BSplineIntegrationData< FEMDegree , FEMDegree >::SetChildIntegrator( childIntegrator , depth-2 , _dirichlet , _dirichlet );
DenseNodeData< Real , FEMDegree > metSolution , metConstraints;
if( coarseToFine ) metSolution = metSolutionConstraints; // This stores the up-sampled solution up to depth-2
else metConstraints = metSolutionConstraints; // This stores the down-sampled constraints up to depth
double _maxMemoryUsage = maxMemoryUsage;
maxMemoryUsage = 0;
int slices = _Dimension< FEMDegree >(depth);
double systemTime=0. , solveTime=0. , updateTime=0. , evaluateTime = 0.;
if( coarseToFine )
{
if( depth>_minDepth )
{
// Up-sample the cumulative change in solution @(depth-2) into the cumulative change in solution @(depth-1)
if( depth-2>=_minDepth ) _UpSample( depth-1 , metSolution );
// Add in the change in solution @(depth-1)
#pragma omp parallel for num_threads( threads )
for( int i=_sNodes.begin(depth-1) ; i<_sNodes.end(depth-1) ; i++ ) metSolution[i] += solution[i];
// Evaluate the points @(depth) using the cumulative change in solution @(depth-1)
if( _constrainValues )
{
evaluateTime = Time();
_SetPointValuesFromCoarser( pointInfo , depth , bsData , metSolution );
evaluateTime = Time() - evaluateTime;
}
}
}
else if( depth<_sNodes.levels()-1 )
for( int i=_sNodes.begin(depth) ; i<_sNodes.end(depth) ; i++ ) constraints[i] -= metConstraints[i];
double bNorm=0 , inRNorm=0 , outRNorm=0;
if( depth>=_minDepth )
{
// Add padding space if we are computing residuals
int frontOffset = ( showResidual || inRNorm2 ) ? OverlapRadius : 0;
int backOffset = ( showResidual || outRNorm2 ) ? OverlapRadius : 0;
// Set the number of in-memory slices required for a temporally blocked solver
int solveSlices = std::min< int >( OverlapRadius*iters - (OverlapRadius-1) , slices ) , matrixSlices = std::max< int >( 1 , std::min< int >( solveSlices+frontOffset+backOffset , slices ) );
// The list of matrices for each in-memory slices
std::vector< SparseMatrix< Real > > _M( matrixSlices );
// The list of multi-colored indices for each in-memory slice
std::vector< std::vector< std::vector< int > > > __mcIndices( std::max< int >( 0 , solveSlices ) );
int dir = coarseToFine ? -1 : 1 , start = coarseToFine ? slices-1 : 0 , end = coarseToFine ? -1 : slices;
for( int frontSlice=start-frontOffset*dir , backSlice = frontSlice-OverlapRadius*(iters-1)*dir ; backSlice!=end+backOffset*dir ; frontSlice+=dir , backSlice+=dir )
{
double t;
if( frontSlice+frontOffset*dir>=0 && frontSlice+frontOffset*dir<slices )
{
int s = frontSlice+frontOffset*dir , _s = s % matrixSlices;
t = Time();
// Compute the system matrix
ConstPointer( Real ) B = constraints.data + _sNodes.begin( depth , s );
Pointer( Real ) X = solution.data + _sNodes.begin( depth , s );
_GetSliceMatrixAndUpdateConstraints( pointInfo , _M[_s] , constraints , integrator , childIntegrator , bsData , depth , s , metSolution , coarseToFine );
systemTime += Time()-t;
Pointer( TreeOctNode* ) const nodes = _sNodes.treeNodes + _sNodes.begin(depth);
// Compute residuals
if( showResidual || inRNorm2 )
#pragma omp parallel for num_threads( threads ) reduction( + : bNorm , inRNorm )
for( int j=0 ; j<_M[_s].rows ; j++ )
{
Real temp = Real(0);
ConstPointer( MatrixEntry< Real > ) start = _M[_s][j];
ConstPointer( MatrixEntry< Real > ) end = start + _M[_s].rowSizes[j];
ConstPointer( MatrixEntry< Real > ) e;
for( e=start ; e!=end ; e++ ) temp += X[ e->N ] * e->Value;
bNorm += B[j]*B[j];
inRNorm += (temp-B[j]) * (temp-B[j]);
}
else if( bNorm2 )
#pragma omp parallel for num_threads( threads ) reduction( + : bNorm )
for( int j=0 ; j<_M[_s].rows ; j++ ) bNorm += B[j]*B[j];
}
t = Time();
// Compute the multicolor indices
if( iters && frontSlice>=0 && frontSlice<slices )
{
int s = frontSlice , _s = s % matrixSlices , __s = s % solveSlices;
for( int i=0 ; i<int( __mcIndices[__s].size() ) ; i++ ) __mcIndices[__s][i].clear();
_setMultiColorIndices< FEMDegree >( _sNodes.begin(depth,s) , _sNodes.end(depth,s) , __mcIndices[__s] );
}
// Advance through the in-memory slices, taking an appropriately sized stride
for( int slice=frontSlice ; slice*dir>=backSlice*dir ; slice-=OverlapRadius*dir )
if( slice>=0 && slice<slices )
{
int s = slice , _s = s % matrixSlices , __s = s % solveSlices;
// Do the GS solver
ConstPointer( Real ) B = constraints.data + _sNodes.begin( depth , s );
Pointer( Real ) X = solution.data + _sNodes.begin( depth , s );
SparseMatrix< Real >::SolveGS( __mcIndices[__s] , _M[_s] , B , X , !coarseToFine , threads );
}
solveTime += Time() - t;
// Compute residuals
if( (showResidual || outRNorm2) && backSlice-backOffset*dir>=0 && backSlice-backOffset*dir<slices )
{
int s = backSlice-backOffset*dir , _s = s % matrixSlices;
ConstPointer( Real ) B = constraints.data + _sNodes.begin( depth , s );
Pointer( Real ) X = solution.data + _sNodes.begin( depth , s );
#pragma omp parallel for num_threads( threads ) reduction( + : outRNorm )
for( int j=0 ; j<_M[_s].rows ; j++ )
{
Real temp = Real(0);
ConstPointer( MatrixEntry< Real > ) start = _M[_s][j];
ConstPointer( MatrixEntry< Real > ) end = start + _M[_s].rowSizes[j];
ConstPointer( MatrixEntry< Real > ) e;
for( e=start ; e!=end ; e++ ) temp += X[ e->N ] * e->Value;
outRNorm += (temp-B[j]) * (temp-B[j]);
}
}
}
}
if( bNorm2 ) bNorm2[depth] = bNorm;
if( inRNorm2 ) inRNorm2[depth] = inRNorm;
if( outRNorm2 ) outRNorm2[depth] = outRNorm;
if( showResidual && iters )
{
for( int i=0 ; i<depth ; i++ ) printf( " " );
printf( "GS: %.4e -> %.4e -> %.4e (%.2e) [%d]\n" , sqrt( bNorm ) , sqrt( inRNorm ) , sqrt( outRNorm ) , sqrt( outRNorm/bNorm ) , iters );
}
if( !coarseToFine && depth>_minDepth )
{
// Explicitly compute the restriction of the met solution onto the coarser nodes
// and down-sample the previous accumulation
{
_UpdateConstraintsFromFiner( childIntegrator , bsData , depth , solution , metConstraints );
if( _constrainValues ) _SetPointConstraintsFromFiner( pointInfo , depth , bsData , solution , metConstraints );
if( depth<_sNodes.levels()-1 ) _DownSample( depth , metConstraints );
}
}
MemoryUsage();
if( !forceSilent ) DumpOutput( "\tEvaluated / Got / Solved in: %6.3f / %6.3f / %6.3f\t(%.3f MB)\n" , evaluateTime , systemTime , solveTime , float( maxMemoryUsage ) );
maxMemoryUsage = std::max< double >( maxMemoryUsage , _maxMemoryUsage );
return iters;
}
template< class Real >
template< int FEMDegree >
int Octree< Real >::_SolveSystemCG( const BSplineData< FEMDegree >& bsData , SparseNodeData< PointData< Real > , 0 >& pointInfo , int depth , DenseNodeData< Real , FEMDegree >& solution , DenseNodeData< Real , FEMDegree >& constraints , DenseNodeData< Real , FEMDegree >& metSolutionConstraints , int iters , bool coarseToFine , bool showResidual , double* bNorm2 , double* inRNorm2 , double* outRNorm2 , double accuracy )
{
typename BSplineIntegrationData< FEMDegree , FEMDegree >::FunctionIntegrator::Integrator integrator;
typename BSplineIntegrationData< FEMDegree , FEMDegree >::FunctionIntegrator::ChildIntegrator childIntegrator;
BSplineIntegrationData< FEMDegree , FEMDegree >::SetIntegrator( integrator , depth-1 , _dirichlet , _dirichlet );
if( depth>_minDepth ) BSplineIntegrationData< FEMDegree , FEMDegree >::SetChildIntegrator( childIntegrator , depth-2 , _dirichlet , _dirichlet );
DenseNodeData< Real , FEMDegree > metSolution , metConstraints;
if( coarseToFine ) metSolution = metSolutionConstraints; // This stores the up-sampled solution up to depth-2
else metConstraints = metSolutionConstraints; // This stores the down-sampled constraints up to depth
double _maxMemoryUsage = maxMemoryUsage;
maxMemoryUsage = 0;
int iter = 0;
Pointer( Real ) X = solution.data + _sNodes.begin( depth );
Pointer( Real ) B = constraints.data + _sNodes.begin( depth );
SparseMatrix< Real > M;
double systemTime=0. , solveTime=0. , updateTime=0. , evaluateTime = 0.;
if( coarseToFine )
{
if( depth>_minDepth )
{
// Up-sample the cumulative change in solution @(depth-2) into the cumulative change in solution @(depth-1)
if( depth-2>=_minDepth ) _UpSample( depth-1 , metSolution );
// Add in the change in solution @(depth-1)
#pragma omp parallel for num_threads( threads )
for( int i=_sNodes.begin(depth-1) ; i<_sNodes.end(depth-1) ; i++ ) metSolution[i] += solution[i];
// Evaluate the points @(depth) using the cumulative change in solution @(depth-1)
if( _constrainValues )
{
evaluateTime = Time();
_SetPointValuesFromCoarser( pointInfo , depth , bsData , metSolution );
evaluateTime = Time() - evaluateTime;
}
}
}
else if( depth<_sNodes.levels()-1 )
for( int i=_sNodes.begin(depth) ; i<_sNodes.end(depth) ; i++ ) constraints[i] -= metConstraints[i];
// Get the system matrix (and adjust the right-hand-side based on the coarser solution if prolonging)
systemTime = Time();
_GetMatrixAndUpdateConstraints( pointInfo , M , constraints , integrator , childIntegrator , bsData , depth , coarseToFine ? &metSolution : NULL , coarseToFine );
systemTime = Time()-systemTime;
solveTime = Time();
// Solve the linear system
accuracy = Real( accuracy / 100000 ) * M.rows;
int dim = _Dimension< FEMDegree >( depth );
int nonZeroRows = 0;
for( int i=0 ; i<M.rows ; i++ ) if( M.rowSizes[i] ) nonZeroRows++;
bool addDCTerm = ( nonZeroRows==dim*dim*dim && !_constrainValues && !_dirichlet );
double bNorm , inRNorm , outRNorm;
if( showResidual || bNorm2 )
{
bNorm = 0;
#pragma omp parallel for num_threads( threads ) reduction( + : bNorm )
for( int i=0 ; i<_sNodes.size( depth ) ; i++ ) bNorm += B[i] * B[i];
}
if( showResidual || inRNorm2 )
{
inRNorm = 0;
Pointer( Real ) temp = AllocPointer< Real >( _sNodes.size(depth) );
if( addDCTerm ) M.MultiplyAndAddAverage( ( ConstPointer( Real ) )X , temp , threads );
else M.Multiply( ( ConstPointer( Real ) )X , temp , threads );
#pragma omp parallel for num_threads( threads )
for( int i=0 ; i<_sNodes.size(depth) ; i++ ) temp[i] -= B[i];
#pragma omp parallel for num_threads( threads ) reduction( + : inRNorm )
for( int i=0 ; i<_sNodes.size(depth) ; i++ ) inRNorm += temp[i] * temp[i];
FreePointer( temp );
}
iters = std::min< int >( nonZeroRows , iters );
if( iters ) iter += SparseMatrix< Real >::SolveCG( M , ( ConstPointer( Real ) )B , iters , X , Real( accuracy ) , 0 , addDCTerm , false , threads );
solveTime = Time()-solveTime;
if( showResidual || outRNorm2 )
{
outRNorm = 0;
Pointer( Real ) temp = AllocPointer< Real >( _sNodes.size(depth) );
if( addDCTerm ) M.MultiplyAndAddAverage( ( ConstPointer( Real ) )X , temp , threads );
else M.Multiply( ( ConstPointer( Real ) )X , temp , threads );
#pragma omp parallel for num_threads( threads )
for( int i=0 ; i<_sNodes.size(depth) ; i++ ) temp[i] -= B[i];
#pragma omp parallel for num_threads( threads ) reduction( + : outRNorm )
for( int i=0 ; i<_sNodes.size(depth) ; i++ ) outRNorm += temp[i] * temp[i];
FreePointer( temp );
}
if( bNorm2 ) bNorm2[depth] = bNorm * bNorm;
if( inRNorm2 ) inRNorm2[depth] = inRNorm * inRNorm;
if( outRNorm2 ) outRNorm2[depth] = outRNorm * outRNorm;
if( showResidual && iters )
{
for( int i=0 ; i<depth ; i++ ) printf( " " );
printf( "CG: %.4e -> %.4e -> %.4e (%.2e) [%d]\n" , bNorm , inRNorm , outRNorm , outRNorm/bNorm , iter );
}
if( !coarseToFine && depth>_minDepth )
{
// Explicitly compute the restriction of the met solution onto the coarser nodes
// and down-sample the previous accumulation
{
_UpdateConstraintsFromFiner( childIntegrator , bsData , depth , solution , metConstraints );
if( _constrainValues ) _SetPointConstraintsFromFiner( pointInfo , depth , bsData , solution , metConstraints );
if( depth<_sNodes.levels()-1 ) _DownSample( depth , metConstraints );
}
}
MemoryUsage();
DumpOutput( "\tEvaluated / Got / Solved in: %6.3f / %6.3f / %6.3f\t(%.3f MB)\n" , evaluateTime , systemTime , solveTime , float( maxMemoryUsage ) );
maxMemoryUsage = std::max< double >( maxMemoryUsage , _maxMemoryUsage );
return iter;
}
template< class Real >
template< int FEMDegree >
int Octree< Real >::_GetMatrixRowSize( const typename TreeOctNode::Neighbors< BSplineIntegrationData< FEMDegree , FEMDegree >::OverlapSize >& neighbors ) const
{
static const int OverlapSize = BSplineIntegrationData< FEMDegree , FEMDegree >::OverlapSize;
static const int OverlapRadius = - BSplineIntegrationData< FEMDegree , FEMDegree >::OverlapStart;
int count = 0;
int nodeIndex = neighbors.neighbors[OverlapRadius][OverlapRadius][OverlapRadius]->nodeData.nodeIndex;
const TreeOctNode* const * _nodes = &neighbors.neighbors[0][0][0];
for( int i=0 ; i<OverlapSize*OverlapSize*OverlapSize ; i++ ) if( _IsValidNode< FEMDegree >( _nodes[i] ) ) count++;
return count;
}
template< class Real >
template< int FEMDegree1 , int FEMDegree2 >
void Octree< Real >::_SetParentOverlapBounds( const TreeOctNode* node , int& startX , int& endX , int& startY , int& endY , int& startZ , int& endZ )
{
const int OverlapStart = BSplineIntegrationData< FEMDegree1 , FEMDegree2 >::OverlapStart;
if( node->parent )
{
int x , y , z , c = int( node - node->parent->children );
Cube::FactorCornerIndex( c , x , y , z );
startX = BSplineIntegrationData< FEMDegree1 , FEMDegree2 >::ParentOverlapStart[x]-OverlapStart , endX = BSplineIntegrationData< FEMDegree1 , FEMDegree2 >::ParentOverlapEnd[x]-OverlapStart+1;
startY = BSplineIntegrationData< FEMDegree1 , FEMDegree2 >::ParentOverlapStart[y]-OverlapStart , endY = BSplineIntegrationData< FEMDegree1 , FEMDegree2 >::ParentOverlapEnd[y]-OverlapStart+1;
startZ = BSplineIntegrationData< FEMDegree1 , FEMDegree2 >::ParentOverlapStart[z]-OverlapStart , endZ = BSplineIntegrationData< FEMDegree1 , FEMDegree2 >::ParentOverlapEnd[z]-OverlapStart+1;
}
}
// It is assumed that at this point, the evaluationg of the current depth's points, using the coarser resolution solution
// has already happened
template< class Real >
template< int FEMDegree >
void Octree< Real >::_UpdateConstraintsFromCoarser( const SparseNodeData< PointData< Real > , 0 >& pointInfo , const typename TreeOctNode::Neighbors< BSplineIntegrationData< FEMDegree , FEMDegree >::OverlapSize >& neighbors , const typename TreeOctNode::Neighbors< BSplineIntegrationData< FEMDegree , FEMDegree >::OverlapSize >& pNeighbors , TreeOctNode* node , DenseNodeData< Real , FEMDegree >& constraints , const DenseNodeData< Real , FEMDegree >& metSolution , const typename BSplineIntegrationData< FEMDegree , FEMDegree >::FunctionIntegrator::ChildIntegrator& childIntegrator , const Stencil< double , BSplineIntegrationData< FEMDegree , FEMDegree >::OverlapSize >& lapStencil , const BSplineData< FEMDegree >& bsData ) const
{
static const int OverlapSize = BSplineIntegrationData< FEMDegree , FEMDegree >::OverlapStart;
static const int LeftSupportRadius = -BSplineEvaluationData< FEMDegree >::SupportStart;
static const int RightSupportRadius = BSplineEvaluationData< FEMDegree >::SupportEnd;
static const int OverlapRadius = - BSplineIntegrationData< FEMDegree , FEMDegree >::OverlapStart;
const std::vector< PointData< Real > >& points = pointInfo.data;
if( node->depth()<=_minDepth ) return;
// This is a conservative estimate as we only need to make sure that the parent nodes don't overlap the child (not the parent itself)
bool isInterior = _IsInteriorlyOverlapped< FEMDegree , FEMDegree >( node->parent );
int d , off[3];
node->depthAndOffset( d , off );
Real constraint = Real( 0 );
// Offset the constraints using the solution from lower resolutions.
int startX , endX , startY , endY , startZ , endZ;
_SetParentOverlapBounds< FEMDegree , FEMDegree >( node , startX , endX , startY , endY , startZ , endZ );
for( int x=startX ; x<endX ; x++ ) for( int y=startY ; y<endY ; y++ ) for( int z=startZ ; z<endZ ; z++ )
if( _IsValidNode< FEMDegree >( pNeighbors.neighbors[x][y][z] ) )
{
const TreeOctNode* _node = pNeighbors.neighbors[x][y][z];
Real _solution = metSolution[ _node->nodeData.nodeIndex ];
{
if( isInterior ) constraints[ node->nodeData.nodeIndex ] -= Real( lapStencil.values[x][y][z] * _solution );
else
{
int _d , _off[3];
_node->depthAndOffset( _d , _off );
constraints[ node->nodeData.nodeIndex ] -= Real( SystemCoefficients< FEMDegree , FEMDegree >::GetLaplacian( childIntegrator , _off , off ) * _solution );
}
}
}
if( _constrainValues )
{
double constraint = 0;
int fIdx[3];
FunctionIndex< FEMDegree >( node , fIdx );
// Evaluate the current node's basis function at adjacent points
for( int x=-LeftSupportRadius ; x<=RightSupportRadius ; x++ ) for( int y=-LeftSupportRadius ; y<=RightSupportRadius ; y++ ) for( int z=-LeftSupportRadius ; z<=RightSupportRadius ; z++ )
{
const TreeOctNode* _node = neighbors.neighbors[x+OverlapRadius][y+OverlapRadius][z+OverlapRadius];
if( _IsValidNode< 0 >( _node ) && pointInfo.index( _node )!=-1 )
{
const PointData< Real >& pData = points[ pointInfo.index( _node ) ];
Point3D< Real > p = pData.position;
constraint +=
bsData.baseBSplines[ fIdx[0] ][x+LeftSupportRadius]( p[0] ) *
bsData.baseBSplines[ fIdx[1] ][y+LeftSupportRadius]( p[1] ) *
bsData.baseBSplines[ fIdx[2] ][z+LeftSupportRadius]( p[2] ) *
pData.weightedCoarserDValue;
}
}
constraints[ node->nodeData.nodeIndex ] -= Real( constraint );
}
}
// Given the solution @( depth ) add to the met constraints @( depth-1 )
template< class Real >
template< int FEMDegree >
void Octree< Real >::_UpdateConstraintsFromFiner( const typename BSplineIntegrationData< FEMDegree , FEMDegree >::FunctionIntegrator::ChildIntegrator& childIntegrator , const BSplineData< FEMDegree >& bsData , int depth , const DenseNodeData< Real , FEMDegree >& fineSolution , DenseNodeData< Real , FEMDegree >& coarseConstraints ) const
{
static const int OverlapSize = BSplineIntegrationData< FEMDegree , FEMDegree >::OverlapSize;
static const int OverlapRadius = - BSplineIntegrationData< FEMDegree , FEMDegree >::OverlapStart;
typedef typename TreeOctNode::NeighborKey< -BSplineEvaluationData< FEMDegree >::SupportStart , BSplineEvaluationData< FEMDegree >::SupportEnd >SupportKey;
if( depth<=_minDepth ) return;
// Get the stencil describing the Laplacian relating coefficients @(depth) with coefficients @(depth-1)
Stencil< double , OverlapSize > stencils[2][2][2];
SystemCoefficients< FEMDegree , FEMDegree >::SetCentralLaplacianStencils( childIntegrator , stencils );
size_t start = _sNodes.begin(depth) , end = _sNodes.end(depth) , range = end-start;
int lStart = _sNodes.begin(depth-1);
memset( coarseConstraints.data + _sNodes.begin(depth-1) , 0 , sizeof(Real)*_sNodes.size(depth-1) );
// Iterate over the nodes @( depth )
std::vector< SupportKey > neighborKeys( std::max< int >( 1 , threads ) );
for( size_t i=0 ; i<neighborKeys.size() ; i++ ) neighborKeys[i].set( depth-1 );
#pragma omp parallel for num_threads( threads )
for( int i=_sNodes.begin(depth) ; i<_sNodes.end(depth) ; i++ ) if( _IsValidNode< FEMDegree >( _sNodes.treeNodes[i] ) )
{
SupportKey& neighborKey = neighborKeys[ omp_get_thread_num() ];
TreeOctNode* node = _sNodes.treeNodes[i];
// Offset the coarser constraints using the solution from the current resolutions.
int x , y , z , c;
c = int( node - node->parent->children );
Cube::FactorCornerIndex( c , x , y , z );
{
typename TreeOctNode::Neighbors< OverlapSize > pNeighbors;
neighborKey.template getNeighbors< false , OverlapRadius , OverlapRadius >( node->parent , pNeighbors );
const Stencil< double , OverlapSize >& lapStencil = stencils[x][y][z];
bool isInterior = _IsInteriorlyOverlapped< FEMDegree , FEMDegree >( node->parent );
int d , off[3];
node->depthAndOffset( d , off );
// Offset the constraints using the solution from finer resolutions.
int startX , endX , startY , endY , startZ , endZ;
_SetParentOverlapBounds< FEMDegree , FEMDegree >( node , startX , endX , startY , endY , startZ , endZ );
Real solution = fineSolution[ node->nodeData.nodeIndex ];
for( int x=startX ; x<endX ; x++ ) for( int y=startY ; y<endY ; y++ ) for( int z=startZ ; z<endZ ; z++ )
if( _IsValidNode< FEMDegree >( pNeighbors.neighbors[x][y][z] ) )
{
const TreeOctNode* _node = pNeighbors.neighbors[x][y][z];
if( isInterior )
#pragma omp atomic
coarseConstraints[ _node->nodeData.nodeIndex ] += Real( lapStencil.values[x][y][z] * solution );
else
{
int _d , _off[3];
_node->depthAndOffset( _d , _off );
#pragma omp atomic
coarseConstraints[ _node->nodeData.nodeIndex ] += Real( SystemCoefficients< FEMDegree , FEMDegree >::GetLaplacian( childIntegrator , _off , off ) * solution );
}
}
}
}
}
template< class Real >
template< int FEMDegree >
DenseNodeData< Real , FEMDegree > Octree< Real >::SolveSystem( SparseNodeData< PointData< Real > , 0 >& pointInfo , DenseNodeData< Real , FEMDegree >& constraints , bool showResidual , int iters , int maxSolveDepth , int cgDepth , double accuracy )
{
BSplineData< FEMDegree > bsData;
bsData.set( maxSolveDepth , _dirichlet );
maxSolveDepth++;
int iter=0;
iters = std::max< int >( 0 , iters );
DenseNodeData< Real , FEMDegree > solution( _sNodes.size() );
memset( solution.data , 0 , sizeof(Real)*_sNodes.size() );
solution[0] = 0;
DenseNodeData< Real , FEMDegree > metSolution( _sNodes.end( _sNodes.levels()-2 ) );
memset( metSolution.data , 0 , sizeof(Real)*_sNodes.end( _sNodes.levels()-2 ) );
for( int d=_minDepth ; d<_sNodes.levels() ; d++ )
{
DumpOutput( "Depth[%d/%d]: %d\n" , d-1 , _sNodes.levels()-2 , _sNodes.size( d ) );
if( d==_minDepth ) _SolveSystemCG( bsData , pointInfo , d , solution , constraints , metSolution , _sNodes.size(_minDepth) , true , showResidual , NULL , NULL , NULL );
else
{
if( d>cgDepth ) iter += _SolveSystemGS( bsData , pointInfo , d , solution , constraints , metSolution , d>maxSolveDepth ? 0 : iters , true , showResidual , NULL , NULL , NULL );
else iter += _SolveSystemCG( bsData , pointInfo , d , solution , constraints , metSolution , d>maxSolveDepth ? 0 : iters , true , showResidual , NULL , NULL , NULL , accuracy );
}
}
metSolution.resize( 0 );
return solution;
}
template< class Real >
template< int FEMDegree , int NormalDegree >
DenseNodeData< Real , FEMDegree > Octree< Real >::SetLaplacianConstraints( const SparseNodeData< Point3D< Real > , NormalDegree >& normalInfo )
{
typedef typename TreeOctNode::NeighborKey< -BSplineEvaluationData< FEMDegree >::SupportStart , BSplineEvaluationData< FEMDegree >::SupportEnd > SupportKey;
const int OverlapSize = BSplineIntegrationData< NormalDegree , FEMDegree >::OverlapSize;
const int LeftNormalFEMOverlapRadius = -BSplineIntegrationData< NormalDegree , FEMDegree >::OverlapStart;
const int RightNormalFEMOverlapRadius = BSplineIntegrationData< NormalDegree , FEMDegree >::OverlapEnd;
const int LeftFEMNormalOverlapRadius = -BSplineIntegrationData< FEMDegree , NormalDegree >::OverlapStart;
const int RightFEMNormalOverlapRadius = BSplineIntegrationData< FEMDegree , NormalDegree >::OverlapEnd;
// To set the Laplacian constraints, we iterate over the
// splatted normals and compute the dot-product of the
// divergence of the normal field with all the basis functions.
// Within the same depth: set directly as a gather
// Coarser depths
int maxDepth = _sNodes.levels()-1;
DenseNodeData< Real , FEMDegree > constraints( _sNodes.size() ) , _constraints( _sNodes.end( maxDepth-1 ) );
memset( constraints.data , 0 , sizeof(Real)*_sNodes.size() );
memset( _constraints.data , 0 , sizeof(Real)*( _sNodes.end(maxDepth-1) ) );
MemoryUsage();
for( int d=maxDepth ; d>=_minDepth ; d-- )
{
int offset = d>0 ? _sNodes.begin(d-1) : 0;
Stencil< Point3D< double > , OverlapSize > stencil , stencils[2][2][2];
typename BSplineIntegrationData< NormalDegree , FEMDegree >::FunctionIntegrator::Integrator integrator;
typename BSplineIntegrationData< FEMDegree , NormalDegree >::FunctionIntegrator::ChildIntegrator childIntegrator;
BSplineIntegrationData< NormalDegree , FEMDegree >::SetIntegrator( integrator , d-1 , _dirichlet , _dirichlet );
if( d>_minDepth ) BSplineIntegrationData< FEMDegree , NormalDegree >::SetChildIntegrator( childIntegrator , d-2 , _dirichlet , _dirichlet );
SystemCoefficients< NormalDegree , FEMDegree >::SetCentralDivergenceStencil ( integrator , stencil , false );
SystemCoefficients< FEMDegree , NormalDegree >::SetCentralDivergenceStencils( childIntegrator , stencils , true );
std::vector< SupportKey > neighborKeys( std::max< int >( 1 , threads ) );
for( size_t i=0 ; i<neighborKeys.size() ; i++ ) neighborKeys[i].set( _maxDepth );
#pragma omp parallel for num_threads( threads )
for( int i=_sNodes.begin(d) ; i<_sNodes.end(d) ; i++ )
{
SupportKey& neighborKey = neighborKeys[ omp_get_thread_num() ];
TreeOctNode* node = _sNodes.treeNodes[i];
int startX=0 , endX=OverlapSize , startY=0 , endY=OverlapSize , startZ=0 , endZ=OverlapSize;
int depth = node->depth();
typename TreeOctNode::Neighbors< OverlapSize > neighbors;
neighborKey.template getNeighbors< false , LeftFEMNormalOverlapRadius , RightFEMNormalOverlapRadius >( node , neighbors );
bool isInterior = _IsInteriorlyOverlapped< FEMDegree , NormalDegree >( node ) , isInterior2 = _IsInteriorlyOverlapped< NormalDegree , FEMDegree >( node->parent );
int cx , cy , cz;
if( d>_minDepth ) Cube::FactorCornerIndex( (int)( node-node->parent->children) , cx , cy ,cz );
else cx = cy = cz = 0;
Stencil< Point3D< double > , OverlapSize >& _stencil = stencils[cx][cy][cz];
int d , off[3];
node->depthAndOffset( d , off );
// Set constraints from current depth
// Gather the constraints from the vector-field at _node into the constraint stored with node
if( _IsValidNode< FEMDegree >( node ) )
{
for( int x=startX ; x<endX ; x++ ) for( int y=startY ; y<endY ; y++ ) for( int z=startZ ; z<endZ ; z++ )
{
const TreeOctNode* _node = neighbors.neighbors[x][y][z];
if( _IsValidNode< NormalDegree >( _node ) )
{
int _idx = normalInfo.index( _node );
if( _idx>=0 )
if( isInterior ) constraints[i] += Point3D< Real >::Dot( stencil.values[x][y][z] , normalInfo.data[ _idx ] );
else
{
int _d , _off[3];
_node->depthAndOffset( _d , _off );
constraints[i] += Real( SystemCoefficients< NormalDegree , FEMDegree >::GetDivergence2( integrator , _off , off , normalInfo.data[ _idx ] ) );
}
}
}
_SetParentOverlapBounds< NormalDegree , FEMDegree >( node , startX , endX , startY , endY , startZ , endZ );
}
if( !_IsValidNode< NormalDegree >( node ) ) continue;
int idx = normalInfo.index( node );
if( idx<0 ) continue;
const Point3D< Real >& normal = normalInfo.data[ idx ];
if( normal[0]==0 && normal[1]==0 && normal[2]==0 ) continue;
// Set the _constraints for the parents
if( depth>_minDepth )
{
neighborKey.template getNeighbors< false , LeftNormalFEMOverlapRadius , RightNormalFEMOverlapRadius >( node->parent , neighbors );
for( int x=startX ; x<endX ; x++ ) for( int y=startY ; y<endY ; y++ ) for( int z=startZ ; z<endZ ; z++ )
{
TreeOctNode* _node = neighbors.neighbors[x][y][z];
if( _node && ( isInterior2 || _IsValidNode< FEMDegree >( _node ) ) )
{
TreeOctNode* _node = neighbors.neighbors[x][y][z];
Real c;
if( isInterior2 ) c = Point3D< Real >::Dot( _stencil.values[x][y][z] , normal );
else
{
int _d , _off[3];
_node->depthAndOffset( _d , _off );
c = Real( SystemCoefficients< FEMDegree , NormalDegree >::GetDivergence1( childIntegrator , _off , off , normal ) );
}
#pragma omp atomic
_constraints[ _node->nodeData.nodeIndex ] += c;
}
}
}
}
MemoryUsage();
}
// Fine-to-coarse down-sampling of constraints
for( int d=maxDepth-1 ; d>_minDepth ; d-- ) _DownSample( d , _constraints );
// Add the accumulated constraints from all finer depths
#pragma omp parallel for num_threads( threads )
for( int i=0 ; i<_sNodes.end(maxDepth-1) ; i++ ) constraints[i] += _constraints[i];
_constraints.resize( 0 );
DenseNodeData< Point3D< Real > , NormalDegree > coefficients( _sNodes.end( maxDepth-1 ) );
for( int d=maxDepth-1 ; d>=_minDepth ; d-- )
{
#pragma omp parallel for num_threads( threads )
for( int i=_sNodes.begin(d) ; i<_sNodes.end(d) ; i++ ) if( _IsValidNode< NormalDegree >( _sNodes.treeNodes[i] ) )
{
int idx = normalInfo.index( _sNodes.treeNodes[i] );
if( idx<0 ) continue;
coefficients[i] = normalInfo.data[ idx ];
}
}
// Coarse-to-fine up-sampling of coefficients
for( int d=_minDepth+1 ; d<maxDepth ; d++ ) _UpSample( d , coefficients );
// Compute the contribution from all coarser depths
for( int d=_minDepth ; d<=maxDepth ; d++ )
{
size_t start = _sNodes.begin(d) , end = _sNodes.end(d) , range = end - start;
Stencil< Point3D< double > , OverlapSize > stencils[2][2][2];
typename BSplineIntegrationData< NormalDegree , FEMDegree >::FunctionIntegrator::ChildIntegrator childIntegrator;
if( d>_minDepth ) BSplineIntegrationData< NormalDegree , FEMDegree >::SetChildIntegrator( childIntegrator , d-2 , _dirichlet , _dirichlet );
SystemCoefficients< NormalDegree , FEMDegree >::SetCentralDivergenceStencils( childIntegrator , stencils , false );
std::vector< SupportKey > neighborKeys( std::max< int >( 1 , threads ) );
for( size_t i=0 ; i<neighborKeys.size() ; i++ ) neighborKeys[i].set( maxDepth );
#pragma omp parallel for num_threads( threads )
for( int i=_sNodes.begin(d) ; i<_sNodes.end(d) ; i++ ) if( _IsValidNode< FEMDegree >( _sNodes.treeNodes[i] ) )
{
SupportKey& neighborKey = neighborKeys[ omp_get_thread_num() ];
TreeOctNode* node = _sNodes.treeNodes[i];
int depth = node->depth();
if( !depth ) continue;
int startX , endX , startY , endY , startZ , endZ;
_SetParentOverlapBounds< FEMDegree , NormalDegree >( node , startX , endX , startY , endY , startZ , endZ );
typename TreeOctNode::Neighbors< OverlapSize > neighbors;
neighborKey.template getNeighbors< false , LeftFEMNormalOverlapRadius , RightFEMNormalOverlapRadius >( node->parent , neighbors );
bool isInterior = _IsInteriorlyOverlapped< FEMDegree , NormalDegree >( node->parent );
int cx , cy , cz;
if( d )
{
int c = int( node - node->parent->children );
Cube::FactorCornerIndex( c , cx , cy , cz );
}
else cx = cy = cz = 0;
Stencil< Point3D< double > , OverlapSize >& _stencil = stencils[cx][cy][cz];
Real constraint = Real(0);
int d , off[3];
node->depthAndOffset( d , off );
for( int x=startX ; x<endX ; x++ ) for( int y=startY ; y<endY ; y++ ) for( int z=startZ ; z<endZ ; z++ )
{
TreeOctNode* _node = neighbors.neighbors[x][y][z];
if( _IsValidNode< NormalDegree >( _node ) )
{
int _i = _node->nodeData.nodeIndex;
if( isInterior ) constraint += Point3D< Real >::Dot( coefficients[_i] , _stencil.values[x][y][z] );
else
{
int _d , _off[3];
_node->depthAndOffset( _d , _off );
constraint += Real( SystemCoefficients< NormalDegree , FEMDegree >::GetDivergence2( childIntegrator , _off , off , coefficients[_i] ) );
}
}
}
constraints[ node->nodeData.nodeIndex ] += constraint;
}
}
MemoryUsage();
coefficients.resize( 0 );
return constraints;
}
|