1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
/*
Copyright (c) 2013, Michael Kazhdan
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. Redistributions in binary form must reproduce
the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.
Neither the name of the Johns Hopkins University nor the names of its contributors
may be used to endorse or promote products derived from this software without specific
prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#ifdef _OPENMP
#include <omp.h>
#endif // _OPENMP
#include <algorithm>
#include "CmdLineParser.h"
#include "Geometry.h"
#include "Ply.h"
#include "MAT.h"
#include "MyTime.h"
cmdLineString In( "in" ) , Out( "out" );
cmdLineInt Smooth( "smooth" , 5 );
cmdLineFloat Trim( "trim" ) , IslandAreaRatio( "aRatio" , 0.001f );
cmdLineReadable PolygonMesh( "polygonMesh" );
cmdLineReadable* params[] =
{
&In , &Out , &Trim , &PolygonMesh , &Smooth , &IslandAreaRatio
};
void ShowUsage( char* ex )
{
printf( "Usage: %s\n" , ex );
printf( "\t --%s <input polygon mesh>\n" , In.name );
printf( "\t[--%s <ouput polygon mesh>]\n" , Out.name );
printf( "\t[--%s <smoothing iterations>=%d]\n" , Smooth.name , Smooth.value );
printf( "\t[--%s <trimming value>]\n" , Trim.name );
printf( "\t[--%s <relative area of islands>=%f]\n" , IslandAreaRatio.name , IslandAreaRatio.value );
printf( "\t[--%s]\n" , PolygonMesh.name );
}
long long EdgeKey( int key1 , int key2 )
{
if( key1<key2 ) return ( ( (long long)key1 )<<32 ) | ( (long long)key2 );
else return ( ( (long long)key2 )<<32 ) | ( (long long)key1 );
}
template< class Real , class Vertex >
Vertex InterpolateVertices( const Vertex& v1 , const Vertex& v2 , Real value )
{
typename Vertex::Wrapper _v1(v1) , _v2(v2);
if( _v1.value==_v2.value ) return Vertex( (_v1+_v2)/Real(2.) );
Real dx = ( _v1.value-value ) / ( _v1.value-_v2.value );
return Vertex( _v1*(1.f-dx) + _v2*dx );
}
template< class Real , class Vertex >
void SmoothValues( std::vector< Vertex >& vertices , const std::vector< std::vector< int > >& polygons )
{
std::vector< int > count( vertices.size() );
std::vector< Real > sums( vertices.size() , 0 );
for( size_t i=0 ; i<polygons.size() ; i++ )
{
int sz = int(polygons[i].size());
for( int j=0 ; j<sz ; j++ )
{
int j1 = j , j2 = (j+1)%sz;
int v1 = polygons[i][j1] , v2 = polygons[i][j2];
count[v1]++ , count[v2]++;
sums[v1] += vertices[v2].value , sums[v2] += vertices[v1].value;
}
}
for( size_t i=0 ; i<vertices.size() ; i++ ) vertices[i].value = ( sums[i] + vertices[i].value ) / ( count[i] + 1 );
}
template< class Real , class Vertex >
void SplitPolygon
(
const std::vector< int >& polygon ,
std::vector< Vertex >& vertices ,
std::vector< std::vector< int > >* ltPolygons , std::vector< std::vector< int > >* gtPolygons ,
std::vector< bool >* ltFlags , std::vector< bool >* gtFlags ,
hash_map< long long , int >& vertexTable ,
Real trimValue
)
{
int sz = int( polygon.size() );
std::vector< bool > gt( sz );
int gtCount = 0;
for( int j=0 ; j<sz ; j++ )
{
gt[j] = ( vertices[ polygon[j] ].value>trimValue );
if( gt[j] ) gtCount++;
}
if ( gtCount==sz ){ if( gtPolygons ) gtPolygons->push_back( polygon ) ; if( gtFlags ) gtFlags->push_back( false ); }
else if( gtCount==0 ){ if( ltPolygons ) ltPolygons->push_back( polygon ) ; if( ltFlags ) ltFlags->push_back( false ); }
else
{
int start;
for( start=0 ; start<sz ; start++ ) if( gt[start] && !gt[(start+sz-1)%sz] ) break;
bool gtFlag = true;
std::vector< int > poly;
// Add the initial vertex
{
int j1 = (start+int(sz)-1)%sz , j2 = start;
int v1 = polygon[j1] , v2 = polygon[j2];
int vIdx;
hash_map< long long , int >::iterator iter = vertexTable.find( EdgeKey( v1 , v2 ) );
if( iter==vertexTable.end() )
{
vertexTable[ EdgeKey( v1 , v2 ) ] = vIdx = int( vertices.size() );
vertices.push_back( InterpolateVertices( vertices[v1] , vertices[v2] , trimValue ) );
}
else vIdx = iter->second;
poly.push_back( vIdx );
}
for( int _j=0 ; _j<=sz ; _j++ )
{
int j1 = (_j+start+sz-1)%sz , j2 = (_j+start)%sz;
int v1 = polygon[j1] , v2 = polygon[j2];
if( gt[j2]==gtFlag ) poly.push_back( v2 );
else
{
int vIdx;
hash_map< long long , int >::iterator iter = vertexTable.find( EdgeKey( v1 , v2 ) );
if( iter==vertexTable.end() )
{
vertexTable[ EdgeKey( v1 , v2 ) ] = vIdx = int( vertices.size() );
vertices.push_back( InterpolateVertices( vertices[v1] , vertices[v2] , trimValue ) );
}
else vIdx = iter->second;
poly.push_back( vIdx );
if( gtFlag ){ if( gtPolygons ) gtPolygons->push_back( poly ) ; if( ltFlags ) ltFlags->push_back( true ); }
else { if( ltPolygons ) ltPolygons->push_back( poly ) ; if( gtFlags ) gtFlags->push_back( true ); }
poly.clear() , poly.push_back( vIdx ) , poly.push_back( v2 );
gtFlag = !gtFlag;
}
}
}
}
template< class Real , class Vertex >
void Triangulate( const std::vector< Vertex >& vertices , const std::vector< std::vector< int > >& polygons , std::vector< std::vector< int > >& triangles )
{
triangles.clear();
for( size_t i=0 ; i<polygons.size() ; i++ )
if( polygons.size()>3 )
{
MinimalAreaTriangulation< Real > mat;
std::vector< Point3D< Real > > _vertices( polygons[i].size() );
std::vector< TriangleIndex > _triangles;
for( int j=0 ; j<int( polygons[i].size() ) ; j++ ) _vertices[j] = vertices[ polygons[i][j] ].point;
mat.GetTriangulation( _vertices , _triangles );
// Add the triangles to the mesh
size_t idx = triangles.size();
triangles.resize( idx+_triangles.size() );
for( int j=0 ; j<int(_triangles.size()) ; j++ )
{
triangles[idx+j].resize(3);
for( int k=0 ; k<3 ; k++ ) triangles[idx+j][k] = polygons[i][ _triangles[j].idx[k] ];
}
}
else if( polygons[i].size()==3 ) triangles.push_back( polygons[i] );
}
template< class Real , class Vertex >
double PolygonArea( const std::vector< Vertex >& vertices , const std::vector< int >& polygon )
{
if( polygon.size()<3 ) return 0.;
else if( polygon.size()==3 ) return TriangleArea( vertices[polygon[0]].point , vertices[polygon[1]].point , vertices[polygon[2]].point );
else
{
Point3D< Real > center;
for( size_t i=0 ; i<polygon.size() ; i++ ) center += vertices[ polygon[i] ].point;
center /= Real( polygon.size() );
double area = 0;
for( size_t i=0 ; i<polygon.size() ; i++ ) area += TriangleArea( center , vertices[ polygon[i] ].point , vertices[ polygon[ (i+1)%polygon.size() ] ].point );
return area;
}
}
template< class Vertex >
void RemoveHangingVertices( std::vector< Vertex >& vertices , std::vector< std::vector< int > >& polygons )
{
hash_map< int , int > vMap;
std::vector< bool > vertexFlags( vertices.size() , false );
for( size_t i=0 ; i<polygons.size() ; i++ ) for( size_t j=0 ; j<polygons[i].size() ; j++ ) vertexFlags[ polygons[i][j] ] = true;
int vCount = 0;
for( int i=0 ; i<int(vertices.size()) ; i++ ) if( vertexFlags[i] ) vMap[i] = vCount++;
for( size_t i=0 ; i<polygons.size() ; i++ ) for( size_t j=0 ; j<polygons[i].size() ; j++ ) polygons[i][j] = vMap[ polygons[i][j] ];
std::vector< Vertex > _vertices( vCount );
for( int i=0 ; i<int(vertices.size()) ; i++ ) if( vertexFlags[i] ) _vertices[ vMap[i] ] = vertices[i];
vertices = _vertices;
}
void SetConnectedComponents( const std::vector< std::vector< int > >& polygons , std::vector< std::vector< int > >& components )
{
std::vector< int > polygonRoots( polygons.size() );
for( size_t i=0 ; i<polygons.size() ; i++ ) polygonRoots[i] = int(i);
hash_map< long long , int > edgeTable;
for( size_t i=0 ; i<polygons.size() ; i++ )
{
int sz = int( polygons[i].size() );
for( int j=0 ; j<sz ; j++ )
{
int j1 = j , j2 = (j+1)%sz;
int v1 = polygons[i][j1] , v2 = polygons[i][j2];
long long eKey = EdgeKey( v1 , v2 );
hash_map< long long , int >::iterator iter = edgeTable.find( eKey );
if( iter==edgeTable.end() ) edgeTable[ eKey ] = int(i);
else
{
int p = iter->second;
while( polygonRoots[p]!=p )
{
int temp = polygonRoots[p];
polygonRoots[p] = int(i);
p = temp;
}
polygonRoots[p] = int(i);
}
}
}
for( size_t i=0 ; i<polygonRoots.size() ; i++ )
{
int p = int(i);
while( polygonRoots[p]!=p ) p = polygonRoots[p];
int root = p;
p = int(i);
while( polygonRoots[p]!=p )
{
int temp = polygonRoots[p];
polygonRoots[p] = root;
p = temp;
}
}
int cCount = 0;
hash_map< int , int > vMap;
for( int i= 0 ; i<int(polygonRoots.size()) ; i++ ) if( polygonRoots[i]==i ) vMap[i] = cCount++;
components.resize( cCount );
for( int i=0 ; i<int(polygonRoots.size()) ; i++ ) components[ vMap[ polygonRoots[i] ] ].push_back(i);
}
template< class Real >
inline Point3D< Real > CrossProduct( Point3D< Real > p1 , Point3D< Real > p2 ){ return Point3D< Real >( p1[1]*p2[2]-p1[2]*p2[1] , p1[2]*p2[0]-p1[0]*p2[2] , p1[0]*p1[1]-p1[1]*p2[0] ); }
template< class Real >
double TriangleArea( Point3D< Real > v1 , Point3D< Real > v2 , Point3D< Real > v3 )
{
Point3D< Real > n = CrossProduct( v2-v1 , v3-v1 );
return sqrt( n[0]*n[0] + n[1]*n[1] + n[2]*n[2] ) / 2.;
}
template< class Vertex >
int Execute( void )
{
float min , max;
int paramNum = sizeof(params)/sizeof(cmdLineReadable*);
std::vector< Vertex > vertices;
std::vector< std::vector< int > > polygons;
int ft , commentNum = paramNum+2;
char** comments;
PlyReadPolygons( In.value , vertices , polygons , Vertex::ReadProperties , Vertex::ReadComponents , ft , &comments , &commentNum );
for( int i=0 ; i<Smooth.value ; i++ ) SmoothValues< float , Vertex >( vertices , polygons );
min = max = vertices[0].value;
for( size_t i=0 ; i<vertices.size() ; i++ ) min = std::min< float >( min , vertices[i].value ) , max = std::max< float >( max , vertices[i].value );
printf( "Value Range: [%f,%f]\n" , min , max );
hash_map< long long , int > vertexTable;
std::vector< std::vector< int > > ltPolygons , gtPolygons;
std::vector< bool > ltFlags , gtFlags;
for( int i=0 ; i<paramNum+2 ; i++ ) comments[i+commentNum]=new char[1024];
sprintf( comments[commentNum++] , "Running Surface Trimmer (V5)" );
if( In.set ) sprintf(comments[commentNum++],"\t--%s %s" , In.name , In.value );
if( Out.set ) sprintf(comments[commentNum++],"\t--%s %s" , Out.name , Out.value );
if( Trim.set ) sprintf(comments[commentNum++],"\t--%s %f" , Trim.name , Trim.value );
if( Smooth.set ) sprintf(comments[commentNum++],"\t--%s %d" , Smooth.name , Smooth.value );
if( IslandAreaRatio.set ) sprintf(comments[commentNum++],"\t--%s %f" , IslandAreaRatio.name , IslandAreaRatio.value );
if( PolygonMesh.set ) sprintf(comments[commentNum++],"\t--%s" , PolygonMesh.name );
double t=Time();
for( size_t i=0 ; i<polygons.size() ; i++ ) SplitPolygon( polygons[i] , vertices , <Polygons , >Polygons , <Flags , >Flags , vertexTable , Trim.value );
if( IslandAreaRatio.value>0 )
{
std::vector< std::vector< int > > _ltPolygons , _gtPolygons;
std::vector< std::vector< int > > ltComponents , gtComponents;
SetConnectedComponents( ltPolygons , ltComponents );
SetConnectedComponents( gtPolygons , gtComponents );
std::vector< double > ltAreas( ltComponents.size() , 0. ) , gtAreas( gtComponents.size() , 0. );
std::vector< bool > ltComponentFlags( ltComponents.size() , false ) , gtComponentFlags( gtComponents.size() , false );
double area = 0.;
for( size_t i=0 ; i<ltComponents.size() ; i++ )
{
for( size_t j=0 ; j<ltComponents[i].size() ; j++ )
{
ltAreas[i] += PolygonArea< float , Vertex >( vertices , ltPolygons[ ltComponents[i][j] ] );
ltComponentFlags[i] = ( ltComponentFlags[i] || ltFlags[ ltComponents[i][j] ] );
}
area += ltAreas[i];
}
for( size_t i=0 ; i<gtComponents.size() ; i++ )
{
for( size_t j=0 ; j<gtComponents[i].size() ; j++ )
{
gtAreas[i] += PolygonArea< float , Vertex >( vertices , gtPolygons[ gtComponents[i][j] ] );
gtComponentFlags[i] = ( gtComponentFlags[i] || gtFlags[ gtComponents[i][j] ] );
}
area += gtAreas[i];
}
for( size_t i=0 ; i<ltComponents.size() ; i++ )
{
if( ltAreas[i]<area*IslandAreaRatio.value && ltComponentFlags[i] ) for( size_t j=0 ; j<ltComponents[i].size() ; j++ ) _gtPolygons.push_back( ltPolygons[ ltComponents[i][j] ] );
else for( size_t j=0 ; j<ltComponents[i].size() ; j++ ) _ltPolygons.push_back( ltPolygons[ ltComponents[i][j] ] );
}
for( size_t i=0 ; i<gtComponents.size() ; i++ )
{
if( gtAreas[i]<area*IslandAreaRatio.value && gtComponentFlags[i] ) for( size_t j=0 ; j<gtComponents[i].size() ; j++ ) _ltPolygons.push_back( gtPolygons[ gtComponents[i][j] ] );
else for( size_t j=0 ; j<gtComponents[i].size() ; j++ ) _gtPolygons.push_back( gtPolygons[ gtComponents[i][j] ] );
}
ltPolygons = _ltPolygons , gtPolygons = _gtPolygons;
}
if( !PolygonMesh.set )
{
{
std::vector< std::vector< int > > polys = ltPolygons;
Triangulate< float , Vertex >( vertices , ltPolygons , polys ) , ltPolygons = polys;
}
{
std::vector< std::vector< int > > polys = gtPolygons;
Triangulate< float , Vertex >( vertices , gtPolygons , polys ) , gtPolygons = polys;
}
}
RemoveHangingVertices( vertices , gtPolygons );
sprintf( comments[commentNum++] , "#Trimmed In: %9.1f (s)" , Time()-t );
if( Out.set ) PlyWritePolygons( Out.value , vertices , gtPolygons , Vertex::WriteProperties , Vertex::WriteComponents , ft , comments , commentNum );
return EXIT_SUCCESS;
}
int SurfaceTrimmer( int argc , char* argv[] )
{
int paramNum = sizeof(params)/sizeof(cmdLineReadable*);
cmdLineParse( argc-1 , &argv[1] , paramNum , params , 0 );
if( !In.set || !Trim.set )
{
ShowUsage( argv[0] );
return EXIT_FAILURE;
}
bool readFlags[ PlyColorAndValueVertex< float >::ReadComponents ];
if( !PlyReadHeader( In.value , PlyColorAndValueVertex< float >::ReadProperties , PlyColorAndValueVertex< float >::ReadComponents , readFlags ) ) fprintf( stderr , "[ERROR] Failed to read ply header: %s\n" , In.value ) , exit( 0 );
bool hasValue = readFlags[3];
bool hasColor = ( readFlags[4] || readFlags[7] ) && ( readFlags[5] || readFlags[8] ) && ( readFlags[6] || readFlags[9] );
if( !hasValue ) fprintf( stderr , "[ERROR] Ply file does not contain values\n" ) , exit( 0 );
if( hasColor ) return Execute< PlyColorAndValueVertex< float > >();
else return Execute< PlyValueVertex< float > >();
}
|