File: SurfaceTrimmer.cpp

package info (click to toggle)
colmap 3.5-1
  • links: PTS
  • area: main
  • in suites: buster
  • size: 20,564 kB
  • sloc: ansic: 170,595; cpp: 95,339; python: 2,335; makefile: 183; sh: 51
file content (381 lines) | stat: -rwxr-xr-x 15,646 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
/*
Copyright (c) 2013, Michael Kazhdan
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. Redistributions in binary form must reproduce
the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

Neither the name of the Johns Hopkins University nor the names of its contributors
may be used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE  GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
*/

#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#ifdef _OPENMP
#include <omp.h>
#endif // _OPENMP
#include <algorithm>
#include "CmdLineParser.h"
#include "Geometry.h"
#include "Ply.h"
#include "MAT.h"
#include "MyTime.h"

cmdLineString In( "in" ) , Out( "out" );
cmdLineInt Smooth( "smooth" , 5 );
cmdLineFloat Trim( "trim" ) , IslandAreaRatio( "aRatio" , 0.001f );
cmdLineReadable PolygonMesh( "polygonMesh" );

cmdLineReadable* params[] =
{
	&In , &Out , &Trim , &PolygonMesh , &Smooth , &IslandAreaRatio
};

void ShowUsage( char* ex )
{
	printf( "Usage: %s\n" , ex );
	printf( "\t --%s <input polygon mesh>\n" , In.name );
	printf( "\t[--%s <ouput polygon mesh>]\n" , Out.name );
	printf( "\t[--%s <smoothing iterations>=%d]\n" , Smooth.name , Smooth.value );
	printf( "\t[--%s <trimming value>]\n" , Trim.name );
	printf( "\t[--%s <relative area of islands>=%f]\n" , IslandAreaRatio.name , IslandAreaRatio.value );
	printf( "\t[--%s]\n" , PolygonMesh.name );
}

long long EdgeKey( int key1 , int key2 )
{
	if( key1<key2 ) return ( ( (long long)key1 )<<32 ) | ( (long long)key2 );
	else            return ( ( (long long)key2 )<<32 ) | ( (long long)key1 );
}

template< class Real , class Vertex >
Vertex InterpolateVertices( const Vertex& v1 , const Vertex& v2 , Real value )
{
	typename Vertex::Wrapper _v1(v1) , _v2(v2);
	if( _v1.value==_v2.value ) return Vertex( (_v1+_v2)/Real(2.) );

	Real dx = ( _v1.value-value ) / ( _v1.value-_v2.value );
	return Vertex( _v1*(1.f-dx) + _v2*dx );
}
template< class Real , class Vertex >
void SmoothValues( std::vector< Vertex >& vertices , const std::vector< std::vector< int > >& polygons )
{
	std::vector< int > count( vertices.size() );
	std::vector< Real > sums( vertices.size() , 0 );
	for( size_t i=0 ; i<polygons.size() ; i++ )
	{
		int sz = int(polygons[i].size());
		for( int j=0 ; j<sz ; j++ )
		{
			int j1 = j , j2 = (j+1)%sz;
			int v1 = polygons[i][j1] , v2 = polygons[i][j2];
			count[v1]++ , count[v2]++;
			sums[v1] += vertices[v2].value , sums[v2] += vertices[v1].value;
		}
	}
	for( size_t i=0 ; i<vertices.size() ; i++ ) vertices[i].value = ( sums[i] + vertices[i].value ) / ( count[i] + 1 );
}
template< class Real , class Vertex >
void SplitPolygon
	(
	const std::vector< int >& polygon ,
	std::vector< Vertex >& vertices ,
	std::vector< std::vector< int > >* ltPolygons , std::vector< std::vector< int > >* gtPolygons ,
	std::vector< bool >* ltFlags , std::vector< bool >* gtFlags ,
	hash_map< long long , int >& vertexTable ,
	Real trimValue
	)
{
	int sz = int( polygon.size() );
	std::vector< bool > gt( sz );
	int gtCount = 0;
	for( int j=0 ; j<sz ; j++ )
	{
		gt[j] = ( vertices[ polygon[j] ].value>trimValue );
		if( gt[j] ) gtCount++;
	}
	if     ( gtCount==sz ){ if( gtPolygons ) gtPolygons->push_back( polygon ) ; if( gtFlags ) gtFlags->push_back( false ); }
	else if( gtCount==0  ){ if( ltPolygons ) ltPolygons->push_back( polygon ) ; if( ltFlags ) ltFlags->push_back( false ); }
	else
	{
		int start;
		for( start=0 ; start<sz ; start++ ) if( gt[start] && !gt[(start+sz-1)%sz] ) break;

		bool gtFlag = true;
		std::vector< int > poly;

		// Add the initial vertex
		{
			int j1 = (start+int(sz)-1)%sz , j2 = start;
			int v1 = polygon[j1] , v2 = polygon[j2];
			int vIdx;
			hash_map< long long , int >::iterator iter = vertexTable.find( EdgeKey( v1 , v2 ) );
			if( iter==vertexTable.end() )
			{
				vertexTable[ EdgeKey( v1 , v2 ) ] = vIdx = int( vertices.size() );
				vertices.push_back( InterpolateVertices( vertices[v1] , vertices[v2] , trimValue ) );
			}
			else vIdx = iter->second;
			poly.push_back( vIdx );
		}

		for( int _j=0  ; _j<=sz ; _j++ )
		{
			int j1 = (_j+start+sz-1)%sz , j2 = (_j+start)%sz;
			int v1 = polygon[j1] , v2 = polygon[j2];
			if( gt[j2]==gtFlag ) poly.push_back( v2 );
			else
			{
				int vIdx;
				hash_map< long long , int >::iterator iter = vertexTable.find( EdgeKey( v1 , v2 ) );
				if( iter==vertexTable.end() )
				{
					vertexTable[ EdgeKey( v1 , v2 ) ] = vIdx = int( vertices.size() );
					vertices.push_back( InterpolateVertices( vertices[v1] , vertices[v2] , trimValue ) );
				}
				else vIdx = iter->second;
				poly.push_back( vIdx );
				if( gtFlag ){ if( gtPolygons ) gtPolygons->push_back( poly ) ; if( ltFlags ) ltFlags->push_back( true ); }
				else        { if( ltPolygons ) ltPolygons->push_back( poly ) ; if( gtFlags ) gtFlags->push_back( true ); }
				poly.clear() , poly.push_back( vIdx ) , poly.push_back( v2 );
				gtFlag = !gtFlag;
			}
		}
	}
}
template< class Real , class Vertex >
void Triangulate( const std::vector< Vertex >& vertices , const std::vector< std::vector< int > >& polygons , std::vector< std::vector< int > >& triangles )
{
	triangles.clear();
	for( size_t i=0 ; i<polygons.size() ; i++ )
		if( polygons.size()>3 )
		{
			MinimalAreaTriangulation< Real > mat;
			std::vector< Point3D< Real > > _vertices( polygons[i].size() );
			std::vector< TriangleIndex > _triangles;
			for( int j=0 ; j<int( polygons[i].size() ) ; j++ ) _vertices[j] = vertices[ polygons[i][j] ].point;
			mat.GetTriangulation( _vertices , _triangles );

			// Add the triangles to the mesh
			size_t idx = triangles.size();
			triangles.resize( idx+_triangles.size() );
			for( int j=0 ; j<int(_triangles.size()) ; j++ )
			{
				triangles[idx+j].resize(3);
				for( int k=0 ; k<3 ; k++ ) triangles[idx+j][k] = polygons[i][ _triangles[j].idx[k] ];
			}
		}
		else if( polygons[i].size()==3 ) triangles.push_back( polygons[i] );
}
template< class Real , class Vertex >
double PolygonArea( const std::vector< Vertex >& vertices , const std::vector< int >& polygon )
{
	if( polygon.size()<3 ) return 0.;
	else if( polygon.size()==3 ) return TriangleArea( vertices[polygon[0]].point , vertices[polygon[1]].point , vertices[polygon[2]].point );
	else
	{
		Point3D< Real > center;
		for( size_t i=0 ; i<polygon.size() ; i++ ) center += vertices[ polygon[i] ].point;
		center /= Real( polygon.size() );
		double area = 0;
		for( size_t i=0 ; i<polygon.size() ; i++ ) area += TriangleArea( center , vertices[ polygon[i] ].point , vertices[ polygon[ (i+1)%polygon.size() ] ].point );
		return area;
	}
}

template< class Vertex >
void RemoveHangingVertices( std::vector< Vertex >& vertices , std::vector< std::vector< int > >& polygons )
{
	hash_map< int , int > vMap;
	std::vector< bool > vertexFlags( vertices.size() , false );
	for( size_t i=0 ; i<polygons.size() ; i++ ) for( size_t j=0 ; j<polygons[i].size() ; j++ ) vertexFlags[ polygons[i][j] ] = true;
	int vCount = 0;
	for( int i=0 ; i<int(vertices.size()) ; i++ ) if( vertexFlags[i] ) vMap[i] = vCount++;
	for( size_t i=0 ; i<polygons.size() ; i++ ) for( size_t j=0 ; j<polygons[i].size() ; j++ ) polygons[i][j] = vMap[ polygons[i][j] ];

	std::vector< Vertex > _vertices( vCount );
	for( int i=0 ; i<int(vertices.size()) ; i++ ) if( vertexFlags[i] ) _vertices[ vMap[i] ] = vertices[i];
	vertices = _vertices;
}
void SetConnectedComponents( const std::vector< std::vector< int > >& polygons , std::vector< std::vector< int > >& components )
{
	std::vector< int > polygonRoots( polygons.size() );
	for( size_t i=0 ; i<polygons.size() ; i++ ) polygonRoots[i] = int(i);
	hash_map< long long , int > edgeTable;
	for( size_t i=0 ; i<polygons.size() ; i++ )
	{
		int sz = int( polygons[i].size() );
		for( int j=0 ; j<sz ; j++ )
		{
			int j1 = j , j2 = (j+1)%sz;
			int v1 = polygons[i][j1] , v2 = polygons[i][j2];
			long long eKey = EdgeKey( v1 , v2 );
			hash_map< long long , int >::iterator iter = edgeTable.find( eKey );
			if( iter==edgeTable.end() ) edgeTable[ eKey ] = int(i);
			else
			{
				int p = iter->second;
				while( polygonRoots[p]!=p )
				{
					int temp = polygonRoots[p];
					polygonRoots[p] = int(i);
					p = temp;
				}
				polygonRoots[p] = int(i);
			}
		}
	}
	for( size_t i=0 ; i<polygonRoots.size() ; i++ )
	{
		int p = int(i);
		while( polygonRoots[p]!=p ) p = polygonRoots[p];
		int root = p;
		p = int(i);
		while( polygonRoots[p]!=p )
		{
			int temp = polygonRoots[p];
			polygonRoots[p] = root;
			p = temp;
		}
	}
	int cCount = 0;
	hash_map< int , int > vMap;
	for( int i= 0 ; i<int(polygonRoots.size()) ; i++ ) if( polygonRoots[i]==i ) vMap[i] = cCount++;
	components.resize( cCount );
	for( int i=0 ; i<int(polygonRoots.size()) ; i++ ) components[ vMap[ polygonRoots[i] ] ].push_back(i);
}
template< class Real >
inline Point3D< Real > CrossProduct( Point3D< Real > p1 , Point3D< Real > p2 ){ return Point3D< Real >( p1[1]*p2[2]-p1[2]*p2[1] , p1[2]*p2[0]-p1[0]*p2[2] , p1[0]*p1[1]-p1[1]*p2[0] ); }
template< class Real >
double TriangleArea( Point3D< Real > v1 , Point3D< Real > v2 , Point3D< Real > v3 )
{
	Point3D< Real > n = CrossProduct( v2-v1 , v3-v1 );
	return sqrt( n[0]*n[0] + n[1]*n[1] + n[2]*n[2] ) / 2.;
}
template< class Vertex >
int Execute( void )
{
	float min , max;
	int paramNum = sizeof(params)/sizeof(cmdLineReadable*);
	std::vector< Vertex > vertices;
	std::vector< std::vector< int > > polygons;

	int ft , commentNum = paramNum+2;
	char** comments;
	PlyReadPolygons( In.value , vertices , polygons , Vertex::ReadProperties , Vertex::ReadComponents , ft , &comments , &commentNum );
	for( int i=0 ; i<Smooth.value ; i++ ) SmoothValues< float , Vertex >( vertices , polygons );
	min = max = vertices[0].value;
	for( size_t i=0 ; i<vertices.size() ; i++ ) min = std::min< float >( min , vertices[i].value ) , max = std::max< float >( max , vertices[i].value );
	printf( "Value Range: [%f,%f]\n" , min , max );


	hash_map< long long , int > vertexTable;
	std::vector< std::vector< int > > ltPolygons , gtPolygons;
	std::vector< bool > ltFlags , gtFlags;

	for( int i=0 ; i<paramNum+2 ; i++ ) comments[i+commentNum]=new char[1024];
	sprintf( comments[commentNum++] , "Running Surface Trimmer (V5)" );
	if(              In.set ) sprintf(comments[commentNum++],"\t--%s %s" , In.name , In.value );
	if(             Out.set ) sprintf(comments[commentNum++],"\t--%s %s" , Out.name , Out.value );
	if(            Trim.set ) sprintf(comments[commentNum++],"\t--%s %f" , Trim.name , Trim.value );
	if(          Smooth.set ) sprintf(comments[commentNum++],"\t--%s %d" , Smooth.name , Smooth.value );
	if( IslandAreaRatio.set ) sprintf(comments[commentNum++],"\t--%s %f" , IslandAreaRatio.name , IslandAreaRatio.value );
	if(     PolygonMesh.set ) sprintf(comments[commentNum++],"\t--%s" , PolygonMesh.name );

	double t=Time();
	for( size_t i=0 ; i<polygons.size() ; i++ ) SplitPolygon( polygons[i] , vertices , &ltPolygons , &gtPolygons , &ltFlags , &gtFlags , vertexTable , Trim.value );
	if( IslandAreaRatio.value>0 )
	{
		std::vector< std::vector< int > > _ltPolygons , _gtPolygons;
		std::vector< std::vector< int > > ltComponents , gtComponents;
		SetConnectedComponents( ltPolygons , ltComponents );
		SetConnectedComponents( gtPolygons , gtComponents );
		std::vector< double > ltAreas( ltComponents.size() , 0. ) , gtAreas( gtComponents.size() , 0. );
		std::vector< bool > ltComponentFlags( ltComponents.size() , false ) , gtComponentFlags( gtComponents.size() , false );
		double area = 0.;
		for( size_t i=0 ; i<ltComponents.size() ; i++ )
		{
			for( size_t j=0 ; j<ltComponents[i].size() ; j++ )
			{
				ltAreas[i] += PolygonArea< float , Vertex >( vertices , ltPolygons[ ltComponents[i][j] ] );
				ltComponentFlags[i] = ( ltComponentFlags[i] || ltFlags[ ltComponents[i][j] ] );
			}
			area += ltAreas[i];
		}
		for( size_t i=0 ; i<gtComponents.size() ; i++ )
		{
			for( size_t j=0 ; j<gtComponents[i].size() ; j++ )
			{
				gtAreas[i] += PolygonArea< float , Vertex >( vertices , gtPolygons[ gtComponents[i][j] ] );
				gtComponentFlags[i] = ( gtComponentFlags[i] || gtFlags[ gtComponents[i][j] ] );
			}
			area += gtAreas[i];
		}
		for( size_t i=0 ; i<ltComponents.size() ; i++ )
		{
			if( ltAreas[i]<area*IslandAreaRatio.value && ltComponentFlags[i] ) for( size_t j=0 ; j<ltComponents[i].size() ; j++ ) _gtPolygons.push_back( ltPolygons[ ltComponents[i][j] ] );
			else                                                               for( size_t j=0 ; j<ltComponents[i].size() ; j++ ) _ltPolygons.push_back( ltPolygons[ ltComponents[i][j] ] );
		}
		for( size_t i=0 ; i<gtComponents.size() ; i++ )
		{
			if( gtAreas[i]<area*IslandAreaRatio.value && gtComponentFlags[i] ) for( size_t j=0 ; j<gtComponents[i].size() ; j++ ) _ltPolygons.push_back( gtPolygons[ gtComponents[i][j] ] );
			else                                                               for( size_t j=0 ; j<gtComponents[i].size() ; j++ ) _gtPolygons.push_back( gtPolygons[ gtComponents[i][j] ] );
		}
		ltPolygons = _ltPolygons , gtPolygons = _gtPolygons;
	}
	if( !PolygonMesh.set )
	{
		{
			std::vector< std::vector< int > > polys = ltPolygons;
			Triangulate< float , Vertex >( vertices , ltPolygons , polys ) , ltPolygons = polys;
		}
		{
			std::vector< std::vector< int > > polys = gtPolygons;
			Triangulate< float  , Vertex >( vertices , gtPolygons , polys ) , gtPolygons = polys;
		}
	}

	RemoveHangingVertices( vertices , gtPolygons );
	sprintf( comments[commentNum++] , "#Trimmed In: %9.1f (s)" , Time()-t );
	if( Out.set ) PlyWritePolygons( Out.value , vertices , gtPolygons , Vertex::WriteProperties , Vertex::WriteComponents , ft , comments , commentNum );

	return EXIT_SUCCESS;
}
int SurfaceTrimmer( int argc , char* argv[] )
{
	int paramNum = sizeof(params)/sizeof(cmdLineReadable*);
	cmdLineParse( argc-1 , &argv[1] , paramNum , params , 0 );

	if( !In.set || !Trim.set )
	{
		ShowUsage( argv[0] );
		return EXIT_FAILURE;
	}
	bool readFlags[ PlyColorAndValueVertex< float >::ReadComponents ];
	if( !PlyReadHeader( In.value , PlyColorAndValueVertex< float >::ReadProperties , PlyColorAndValueVertex< float >::ReadComponents , readFlags ) ) fprintf( stderr , "[ERROR] Failed to read ply header: %s\n" , In.value ) , exit( 0 );

	bool hasValue = readFlags[3];
	bool hasColor = ( readFlags[4] || readFlags[7] ) && ( readFlags[5] || readFlags[8] ) && ( readFlags[6] || readFlags[9] );

	if( !hasValue ) fprintf( stderr , "[ERROR] Ply file does not contain values\n" ) , exit( 0 );
	if( hasColor ) return Execute< PlyColorAndValueVertex< float > >();
	else           return Execute< PlyValueVertex< float > >();
}