1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
|
////////////////////////////////////////////////////////////////////////////
// File: ProgramCU.cu
// Author: Changchang Wu
// Description : implementation of ProgramCU and all CUDA kernels
//
// Copyright (c) 2007 University of North Carolina at Chapel Hill
// All Rights Reserved
//
// Permission to use, copy, modify and distribute this software and its
// documentation for educational, research and non-profit purposes, without
// fee, and without a written agreement is hereby granted, provided that the
// above copyright notice and the following paragraph appear in all copies.
//
// The University of North Carolina at Chapel Hill make no representations
// about the suitability of this software for any purpose. It is provided
// 'as is' without express or implied warranty.
//
// Please send BUG REPORTS to ccwu@cs.unc.edu
//
////////////////////////////////////////////////////////////////////////////
#if defined(CUDA_SIFTGPU_ENABLED)
#include "GL/glew.h"
#include "stdio.h"
#include "CuTexImage.h"
#include "ProgramCU.h"
#include "GlobalUtil.h"
//----------------------------------------------------------------
//Begin SiftGPU setting section.
//////////////////////////////////////////////////////////
#define IMUL(X,Y) __mul24(X,Y)
//#define FDIV(X,Y) ((X)/(Y))
#define FDIV(X,Y) __fdividef(X,Y)
/////////////////////////////////////////////////////////
//filter kernel width range (don't change this)
#define KERNEL_MAX_WIDTH 33
#define KERNEL_MIN_WIDTH 5
//////////////////////////////////////////////////////////
//horizontal filter block size (32, 64, 128, 256, 512)
#define FILTERH_TILE_WIDTH 128
//thread block for vertical filter. FILTERV_BLOCK_WIDTH can be (4, 8 or 16)
#define FILTERV_BLOCK_WIDTH 16
#define FILTERV_BLOCK_HEIGHT 32
//The corresponding image patch for a thread block
#define FILTERV_PIXEL_PER_THREAD 4
#define FILTERV_TILE_WIDTH FILTERV_BLOCK_WIDTH
#define FILTERV_TILE_HEIGHT (FILTERV_PIXEL_PER_THREAD * FILTERV_BLOCK_HEIGHT)
//////////////////////////////////////////////////////////
//thread block size for computing Difference of Gaussian
#define DOG_BLOCK_LOG_DIMX 7
#define DOG_BLOCK_LOG_DIMY 0
#define DOG_BLOCK_DIMX (1 << DOG_BLOCK_LOG_DIMX)
#define DOG_BLOCK_DIMY (1 << DOG_BLOCK_LOG_DIMY)
//////////////////////////////////////////////////////////
//thread block size for keypoint detection
#define KEY_BLOCK_LOG_DIMX 3
#define KEY_BLOCK_LOG_DIMY 3
#define KEY_BLOCK_DIMX (1<<KEY_BLOCK_LOG_DIMX)
#define KEY_BLOCK_DIMY (1<<KEY_BLOCK_LOG_DIMY)
//#define KEY_OFFSET_ONE
//make KEY_BLOCK_LOG_DIMX 4 will make the write coalesced..
//but it seems uncoalesced writes don't affect the speed
//////////////////////////////////////////////////////////
//thread block size for initializing list generation (64, 128, 256, 512 ...)
#define HIST_INIT_WIDTH 128
//thread block size for generating feature list (32, 64, 128, 256, 512, ...)
#define LISTGEN_BLOCK_DIM 128
/////////////////////////////////////////////////////////
//how many keypoint orientations to compute in a block
#define ORIENTATION_COMPUTE_PER_BLOCK 64
//how many keypoint descriptor to compute in a block (2, 4, 8, 16, 32)
#define DESCRIPTOR_COMPUTE_PER_BLOCK 4
#define DESCRIPTOR_COMPUTE_BLOCK_SIZE (16 * DESCRIPTOR_COMPUTE_PER_BLOCK)
//how many keypoint descriptor to normalized in a block (32, ...)
#define DESCRIPTOR_NORMALIZ_PER_BLOCK 32
///////////////////////////////////////////
//Thread block size for visualization
//(This doesn't affect the speed of computation)
#define BLOCK_LOG_DIM 4
#define BLOCK_DIM (1 << BLOCK_LOG_DIM)
//End SiftGPU setting section.
//----------------------------------------------------------------
__device__ __constant__ float d_kernel[KERNEL_MAX_WIDTH];
texture<float, 1, cudaReadModeElementType> texData;
texture<unsigned char, 1, cudaReadModeNormalizedFloat> texDataB;
texture<float2, 2, cudaReadModeElementType> texDataF2;
texture<float4, 1, cudaReadModeElementType> texDataF4;
texture<int4, 1, cudaReadModeElementType> texDataI4;
texture<int4, 1, cudaReadModeElementType> texDataList;
//template<int i> __device__ float Conv(float *data) { return Conv<i-1>(data) + data[i]*d_kernel[i];}
//template<> __device__ float Conv<0>(float *data) { return data[0] * d_kernel[0]; }
//////////////////////////////////////////////////////////////
template<int FW> __global__ void FilterH( float* d_result, int width)
{
const int HALF_WIDTH = FW >> 1;
const int CACHE_WIDTH = FILTERH_TILE_WIDTH + FW -1;
const int CACHE_COUNT = 2 + (CACHE_WIDTH - 2)/ FILTERH_TILE_WIDTH;
__shared__ float data[CACHE_WIDTH];
const int bcol = IMUL(blockIdx.x, FILTERH_TILE_WIDTH);
const int col = bcol + threadIdx.x;
const int index_min = IMUL(blockIdx.y, width);
const int index_max = index_min + width - 1;
int src_index = index_min + bcol - HALF_WIDTH + threadIdx.x;
int cache_index = threadIdx.x;
float value = 0;
#pragma unroll
for(int j = 0; j < CACHE_COUNT; ++j)
{
if(cache_index < CACHE_WIDTH)
{
int fetch_index = src_index < index_min? index_min : (src_index > index_max ? index_max : src_index);
data[cache_index] = tex1Dfetch(texData,fetch_index);
src_index += FILTERH_TILE_WIDTH;
cache_index += FILTERH_TILE_WIDTH;
}
}
__syncthreads();
if(col >= width) return;
#pragma unroll
for(int i = 0; i < FW; ++i)
{
value += (data[threadIdx.x + i]* d_kernel[i]);
}
// value = Conv<FW-1>(data + threadIdx.x);
d_result[index_min + col] = value;
}
////////////////////////////////////////////////////////////////////
template<int FW> __global__ void FilterV(float* d_result, int width, int height)
{
const int HALF_WIDTH = FW >> 1;
const int CACHE_WIDTH = FW + FILTERV_TILE_HEIGHT - 1;
const int TEMP = CACHE_WIDTH & 0xf;
//add some extra space to avoid bank conflict
#if FILTERV_TILE_WIDTH == 16
//make the stride 16 * n +/- 1
const int EXTRA = (TEMP == 1 || TEMP == 0) ? 1 - TEMP : 15 - TEMP;
#elif FILTERV_TILE_WIDTH == 8
//make the stride 16 * n +/- 2
const int EXTRA = (TEMP == 2 || TEMP == 1 || TEMP == 0) ? 2 - TEMP : (TEMP == 15? 3 : 14 - TEMP);
#elif FILTERV_TILE_WIDTH == 4
//make the stride 16 * n +/- 4
const int EXTRA = (TEMP >=0 && TEMP <=4) ? 4 - TEMP : (TEMP > 12? 20 - TEMP : 12 - TEMP);
#else
#error
#endif
const int CACHE_TRUE_WIDTH = CACHE_WIDTH + EXTRA;
const int CACHE_COUNT = (CACHE_WIDTH + FILTERV_BLOCK_HEIGHT - 1) / FILTERV_BLOCK_HEIGHT;
const int WRITE_COUNT = (FILTERV_TILE_HEIGHT + FILTERV_BLOCK_HEIGHT -1) / FILTERV_BLOCK_HEIGHT;
__shared__ float data[CACHE_TRUE_WIDTH * FILTERV_TILE_WIDTH];
const int row_block_first = IMUL(blockIdx.y, FILTERV_TILE_HEIGHT);
const int col = IMUL(blockIdx.x, FILTERV_TILE_WIDTH) + threadIdx.x;
const int row_first = row_block_first - HALF_WIDTH;
const int data_index_max = IMUL(height - 1, width) + col;
const int cache_col_start = threadIdx.y;
const int cache_row_start = IMUL(threadIdx.x, CACHE_TRUE_WIDTH);
int cache_index = cache_col_start + cache_row_start;
int data_index = IMUL(row_first + cache_col_start, width) + col;
if(col < width)
{
#pragma unroll
for(int i = 0; i < CACHE_COUNT; ++i)
{
if(cache_col_start < CACHE_WIDTH - i * FILTERV_BLOCK_HEIGHT)
{
int fetch_index = data_index < col ? col : (data_index > data_index_max? data_index_max : data_index);
data[cache_index + i * FILTERV_BLOCK_HEIGHT] = tex1Dfetch(texData,fetch_index);
data_index += IMUL(FILTERV_BLOCK_HEIGHT, width);
}
}
}
__syncthreads();
if(col >= width) return;
int row = row_block_first + threadIdx.y;
int index_start = cache_row_start + threadIdx.y;
#pragma unroll
for(int i = 0; i < WRITE_COUNT; ++i,
row += FILTERV_BLOCK_HEIGHT, index_start += FILTERV_BLOCK_HEIGHT)
{
if(row < height)
{
int index_dest = IMUL(row, width) + col;
float value = 0;
#pragma unroll
for(int i = 0; i < FW; ++i)
{
value += (data[index_start + i] * d_kernel[i]);
}
d_result[index_dest] = value;
}
}
}
template<int LOG_SCALE> __global__ void UpsampleKernel(float* d_result, int width)
{
const int SCALE = (1 << LOG_SCALE), SCALE_MASK = (SCALE - 1);
const float INV_SCALE = 1.0f / (float(SCALE));
int col = IMUL(blockIdx.x, FILTERH_TILE_WIDTH) + threadIdx.x;
if(col >= width) return;
int row = blockIdx.y >> LOG_SCALE;
int index = row * width + col;
int dst_row = blockIdx.y;
int dst_idx= (width * dst_row + col) * SCALE;
int helper = blockIdx.y & SCALE_MASK;
if (helper)
{
float v11 = tex1Dfetch(texData, index);
float v12 = tex1Dfetch(texData, index + 1);
index += width;
float v21 = tex1Dfetch(texData, index);
float v22 = tex1Dfetch(texData, index + 1);
float w1 = INV_SCALE * helper, w2 = 1.0 - w1;
float v1 = (v21 * w1 + w2 * v11);
float v2 = (v22 * w1 + w2 * v12);
d_result[dst_idx] = v1;
#pragma unroll
for(int i = 1; i < SCALE; ++i)
{
const float r2 = i * INV_SCALE;
const float r1 = 1.0f - r2;
d_result[dst_idx +i] = v1 * r1 + v2 * r2;
}
}else
{
float v1 = tex1Dfetch(texData, index);
float v2 = tex1Dfetch(texData, index + 1);
d_result[dst_idx] = v1;
#pragma unroll
for(int i = 1; i < SCALE; ++i)
{
const float r2 = i * INV_SCALE;
const float r1 = 1.0f - r2;
d_result[dst_idx +i] = v1 * r1 + v2 * r2;
}
}
}
////////////////////////////////////////////////////////////////////////////////////////
void ProgramCU::SampleImageU(CuTexImage *dst, CuTexImage *src, int log_scale)
{
int width = src->GetImgWidth(), height = src->GetImgHeight();
src->BindTexture(texData);
dim3 grid((width + FILTERH_TILE_WIDTH - 1)/ FILTERH_TILE_WIDTH, height << log_scale);
dim3 block(FILTERH_TILE_WIDTH);
switch(log_scale)
{
case 1 : UpsampleKernel<1> <<< grid, block>>> ((float*) dst->_cuData, width); break;
case 2 : UpsampleKernel<2> <<< grid, block>>> ((float*) dst->_cuData, width); break;
case 3 : UpsampleKernel<3> <<< grid, block>>> ((float*) dst->_cuData, width); break;
default: break;
}
}
template<int LOG_SCALE> __global__ void DownsampleKernel(float* d_result, int src_width, int dst_width)
{
const int dst_col = IMUL(blockIdx.x, FILTERH_TILE_WIDTH) + threadIdx.x;
if(dst_col >= dst_width) return;
const int src_col = min((dst_col << LOG_SCALE), (src_width - 1));
const int dst_row = blockIdx.y;
const int src_row = blockIdx.y << LOG_SCALE;
const int src_idx = IMUL(src_row, src_width) + src_col;
const int dst_idx = IMUL(dst_width, dst_row) + dst_col;
d_result[dst_idx] = tex1Dfetch(texData, src_idx);
}
__global__ void DownsampleKernel(float* d_result, int src_width, int dst_width, const int log_scale)
{
const int dst_col = IMUL(blockIdx.x, FILTERH_TILE_WIDTH) + threadIdx.x;
if(dst_col >= dst_width) return;
const int src_col = min((dst_col << log_scale), (src_width - 1));
const int dst_row = blockIdx.y;
const int src_row = blockIdx.y << log_scale;
const int src_idx = IMUL(src_row, src_width) + src_col;
const int dst_idx = IMUL(dst_width, dst_row) + dst_col;
d_result[dst_idx] = tex1Dfetch(texData, src_idx);
}
void ProgramCU::SampleImageD(CuTexImage *dst, CuTexImage *src, int log_scale)
{
int src_width = src->GetImgWidth(), dst_width = dst->GetImgWidth() ;
src->BindTexture(texData);
dim3 grid((dst_width + FILTERH_TILE_WIDTH - 1)/ FILTERH_TILE_WIDTH, dst->GetImgHeight());
dim3 block(FILTERH_TILE_WIDTH);
switch(log_scale)
{
case 1 : DownsampleKernel<1> <<< grid, block>>> ((float*) dst->_cuData, src_width, dst_width); break;
case 2 : DownsampleKernel<2> <<< grid, block>>> ((float*) dst->_cuData, src_width, dst_width); break;
case 3 : DownsampleKernel<3> <<< grid, block>>> ((float*) dst->_cuData, src_width, dst_width); break;
default: DownsampleKernel <<< grid, block>>> ((float*) dst->_cuData, src_width, dst_width, log_scale);
}
}
__global__ void ChannelReduce_Kernel(float* d_result)
{
int index = IMUL(blockIdx.x, FILTERH_TILE_WIDTH) + threadIdx.x;
d_result[index] = tex1Dfetch(texData, index*4);
}
__global__ void ChannelReduce_Convert_Kernel(float* d_result)
{
int index = IMUL(blockIdx.x, FILTERH_TILE_WIDTH) + threadIdx.x;
float4 rgba = tex1Dfetch(texDataF4, index);
d_result[index] = 0.299f * rgba.x + 0.587f* rgba.y + 0.114f * rgba.z;
}
void ProgramCU::ReduceToSingleChannel(CuTexImage* dst, CuTexImage* src, int convert_rgb)
{
int width = src->GetImgWidth(), height = dst->GetImgHeight() ;
dim3 grid((width * height + FILTERH_TILE_WIDTH - 1)/ FILTERH_TILE_WIDTH);
dim3 block(FILTERH_TILE_WIDTH);
if(convert_rgb)
{
src->BindTexture(texDataF4);
ChannelReduce_Convert_Kernel<<<grid, block>>>((float*)dst->_cuData);
}else
{
src->BindTexture(texData);
ChannelReduce_Kernel<<<grid, block>>>((float*)dst->_cuData);
}
}
__global__ void ConvertByteToFloat_Kernel(float* d_result)
{
int index = IMUL(blockIdx.x, FILTERH_TILE_WIDTH) + threadIdx.x;
d_result[index] = tex1Dfetch(texDataB, index);
}
void ProgramCU::ConvertByteToFloat(CuTexImage*src, CuTexImage* dst)
{
int width = src->GetImgWidth(), height = dst->GetImgHeight() ;
dim3 grid((width * height + FILTERH_TILE_WIDTH - 1)/ FILTERH_TILE_WIDTH);
dim3 block(FILTERH_TILE_WIDTH);
src->BindTexture(texDataB);
ConvertByteToFloat_Kernel<<<grid, block>>>((float*)dst->_cuData);
}
void ProgramCU::CreateFilterKernel(float sigma, float* kernel, int& width)
{
int i, sz = int( ceil( GlobalUtil::_FilterWidthFactor * sigma -0.5) ) ;//
width = 2*sz + 1;
if(width > KERNEL_MAX_WIDTH)
{
//filter size truncation
sz = KERNEL_MAX_WIDTH >> 1;
width =KERNEL_MAX_WIDTH;
}else if(width < KERNEL_MIN_WIDTH)
{
sz = KERNEL_MIN_WIDTH >> 1;
width =KERNEL_MIN_WIDTH;
}
float rv = 1.0f/(sigma*sigma), v, ksum =0;
// pre-compute filter
for( i = -sz ; i <= sz ; ++i)
{
kernel[i+sz] = v = exp(-0.5f * i * i *rv) ;
ksum += v;
}
//normalize the kernel
rv = 1.0f/ksum;
for(i = 0; i< width ;i++) kernel[i]*=rv;
}
template<int FW> void ProgramCU::FilterImage(CuTexImage *dst, CuTexImage *src, CuTexImage* buf)
{
int width = src->GetImgWidth(), height = src->GetImgHeight();
//horizontal filtering
src->BindTexture(texData);
dim3 gridh((width + FILTERH_TILE_WIDTH - 1)/ FILTERH_TILE_WIDTH, height);
dim3 blockh(FILTERH_TILE_WIDTH);
FilterH<FW><<<gridh, blockh>>>((float*)buf->_cuData, width);
CheckErrorCUDA("FilterH");
///vertical filtering
buf->BindTexture(texData);
dim3 gridv((width + FILTERV_TILE_WIDTH - 1)/ FILTERV_TILE_WIDTH, (height + FILTERV_TILE_HEIGHT - 1)/FILTERV_TILE_HEIGHT);
dim3 blockv(FILTERV_TILE_WIDTH, FILTERV_BLOCK_HEIGHT);
FilterV<FW><<<gridv, blockv>>>((float*)dst->_cuData, width, height);
CheckErrorCUDA("FilterV");
}
//////////////////////////////////////////////////////////////////////
// tested on 2048x1500 image, the time on pyramid construction is
// OpenGL version : 18ms
// CUDA version: 28 ms
void ProgramCU::FilterImage(CuTexImage *dst, CuTexImage *src, CuTexImage* buf, float sigma)
{
float filter_kernel[KERNEL_MAX_WIDTH]; int width;
CreateFilterKernel(sigma, filter_kernel, width);
cudaMemcpyToSymbol(d_kernel, filter_kernel, width * sizeof(float), 0, cudaMemcpyHostToDevice);
switch(width)
{
case 5: FilterImage< 5>(dst, src, buf); break;
case 7: FilterImage< 7>(dst, src, buf); break;
case 9: FilterImage< 9>(dst, src, buf); break;
case 11: FilterImage<11>(dst, src, buf); break;
case 13: FilterImage<13>(dst, src, buf); break;
case 15: FilterImage<15>(dst, src, buf); break;
case 17: FilterImage<17>(dst, src, buf); break;
case 19: FilterImage<19>(dst, src, buf); break;
case 21: FilterImage<21>(dst, src, buf); break;
case 23: FilterImage<23>(dst, src, buf); break;
case 25: FilterImage<25>(dst, src, buf); break;
case 27: FilterImage<27>(dst, src, buf); break;
case 29: FilterImage<29>(dst, src, buf); break;
case 31: FilterImage<31>(dst, src, buf); break;
case 33: FilterImage<33>(dst, src, buf); break;
default: break;
}
}
texture<float, 1, cudaReadModeElementType> texC;
texture<float, 1, cudaReadModeElementType> texP;
texture<float, 1, cudaReadModeElementType> texN;
void __global__ ComputeDOG_Kernel(float* d_dog, float2* d_got, int width, int height)
{
int row = (blockIdx.y << DOG_BLOCK_LOG_DIMY) + threadIdx.y;
int col = (blockIdx.x << DOG_BLOCK_LOG_DIMX) + threadIdx.x;
if(col < width && row < height)
{
int index = IMUL(row, width) + col;
float vp = tex1Dfetch(texP, index);
float v = tex1Dfetch(texC, index);
d_dog[index] = v - vp;
float vxn = tex1Dfetch(texC, index + 1);
float vxp = tex1Dfetch(texC, index - 1);
float vyp = tex1Dfetch(texC, index - width);
float vyn = tex1Dfetch(texC, index + width);
float dx = vxn - vxp, dy = vyn - vyp;
float grd = 0.5f * sqrt(dx * dx + dy * dy);
float rot = (grd == 0.0f? 0.0f : atan2(dy, dx));
d_got[index] = make_float2(grd, rot);
}
}
void __global__ ComputeDOG_Kernel(float* d_dog, int width, int height)
{
int row = (blockIdx.y << DOG_BLOCK_LOG_DIMY) + threadIdx.y;
int col = (blockIdx.x << DOG_BLOCK_LOG_DIMX) + threadIdx.x;
if(col < width && row < height)
{
int index = IMUL(row, width) + col;
float vp = tex1Dfetch(texP, index);
float v = tex1Dfetch(texC, index);
d_dog[index] = v - vp;
}
}
void ProgramCU::ComputeDOG(CuTexImage* gus, CuTexImage* dog, CuTexImage* got)
{
int width = gus->GetImgWidth(), height = gus->GetImgHeight();
dim3 grid((width + DOG_BLOCK_DIMX - 1)/ DOG_BLOCK_DIMX, (height + DOG_BLOCK_DIMY - 1)/DOG_BLOCK_DIMY);
dim3 block(DOG_BLOCK_DIMX, DOG_BLOCK_DIMY);
gus->BindTexture(texC);
(gus -1)->BindTexture(texP);
if(got->_cuData)
ComputeDOG_Kernel<<<grid, block>>>((float*) dog->_cuData, (float2*) got->_cuData, width, height);
else
ComputeDOG_Kernel<<<grid, block>>>((float*) dog->_cuData, width, height);
}
#define READ_CMP_DOG_DATA(datai, tex, idx) \
datai[0] = tex1Dfetch(tex, idx - 1);\
datai[1] = tex1Dfetch(tex, idx);\
datai[2] = tex1Dfetch(tex, idx + 1);\
if(v > nmax)\
{\
nmax = max(nmax, datai[0]);\
nmax = max(nmax, datai[1]);\
nmax = max(nmax, datai[2]);\
if(v < nmax) goto key_finish;\
}else\
{\
nmin = min(nmin, datai[0]);\
nmin = min(nmin, datai[1]);\
nmin = min(nmin, datai[2]);\
if(v > nmin) goto key_finish;\
}
void __global__ ComputeKEY_Kernel(float4* d_key, int width, int colmax, int rowmax,
float dog_threshold0, float dog_threshold, float edge_threshold, int subpixel_localization)
{
float data[3][3], v;
float datap[3][3], datan[3][3];
#ifdef KEY_OFFSET_ONE
int row = (blockIdx.y << KEY_BLOCK_LOG_DIMY) + threadIdx.y + 1;
int col = (blockIdx.x << KEY_BLOCK_LOG_DIMX) + threadIdx.x + 1;
#else
int row = (blockIdx.y << KEY_BLOCK_LOG_DIMY) + threadIdx.y;
int col = (blockIdx.x << KEY_BLOCK_LOG_DIMX) + threadIdx.x;
#endif
int index = IMUL(row, width) + col;
int idx[3] ={index - width, index, index + width};
int in_image =0;
float nmax, nmin, result = 0.0f;
float dx = 0, dy = 0, ds = 0;
bool offset_test_passed = true;
#ifdef KEY_OFFSET_ONE
if(row < rowmax && col < colmax)
#else
if(row > 0 && col > 0 && row < rowmax && col < colmax)
#endif
{
in_image = 1;
data[1][1] = v = tex1Dfetch(texC, idx[1]);
if(fabs(v) <= dog_threshold0) goto key_finish;
data[1][0] = tex1Dfetch(texC, idx[1] - 1);
data[1][2] = tex1Dfetch(texC, idx[1] + 1);
nmax = max(data[1][0], data[1][2]);
nmin = min(data[1][0], data[1][2]);
if(v <=nmax && v >= nmin) goto key_finish;
//if((v > nmax && v < 0 )|| (v < nmin && v > 0)) goto key_finish;
READ_CMP_DOG_DATA(data[0], texC, idx[0]);
READ_CMP_DOG_DATA(data[2], texC, idx[2]);
//edge supression
float vx2 = v * 2.0f;
float fxx = data[1][0] + data[1][2] - vx2;
float fyy = data[0][1] + data[2][1] - vx2;
float fxy = 0.25f * (data[2][2] + data[0][0] - data[2][0] - data[0][2]);
float temp1 = fxx * fyy - fxy * fxy;
float temp2 = (fxx + fyy) * (fxx + fyy);
if(temp1 <=0 || temp2 > edge_threshold * temp1) goto key_finish;
//read the previous level
READ_CMP_DOG_DATA(datap[0], texP, idx[0]);
READ_CMP_DOG_DATA(datap[1], texP, idx[1]);
READ_CMP_DOG_DATA(datap[2], texP, idx[2]);
//read the next level
READ_CMP_DOG_DATA(datan[0], texN, idx[0]);
READ_CMP_DOG_DATA(datan[1], texN, idx[1]);
READ_CMP_DOG_DATA(datan[2], texN, idx[2]);
if(subpixel_localization)
{
//subpixel localization
float fx = 0.5f * (data[1][2] - data[1][0]);
float fy = 0.5f * (data[2][1] - data[0][1]);
float fs = 0.5f * (datan[1][1] - datap[1][1]);
float fss = (datan[1][1] + datap[1][1] - vx2);
float fxs = 0.25f* (datan[1][2] + datap[1][0] - datan[1][0] - datap[1][2]);
float fys = 0.25f* (datan[2][1] + datap[0][1] - datan[0][1] - datap[2][1]);
//need to solve dx, dy, ds;
// |-fx| | fxx fxy fxs | |dx|
// |-fy| = | fxy fyy fys | * |dy|
// |-fs| | fxs fys fss | |ds|
float4 A0 = fxx > 0? make_float4(fxx, fxy, fxs, -fx) : make_float4(-fxx, -fxy, -fxs, fx);
float4 A1 = fxy > 0? make_float4(fxy, fyy, fys, -fy) : make_float4(-fxy, -fyy, -fys, fy);
float4 A2 = fxs > 0? make_float4(fxs, fys, fss, -fs) : make_float4(-fxs, -fys, -fss, fs);
float maxa = max(max(A0.x, A1.x), A2.x);
if(maxa >= 1e-10)
{
if(maxa == A1.x)
{
float4 TEMP = A1; A1 = A0; A0 = TEMP;
}else if(maxa == A2.x)
{
float4 TEMP = A2; A2 = A0; A0 = TEMP;
}
A0.y /= A0.x; A0.z /= A0.x; A0.w/= A0.x;
A1.y -= A1.x * A0.y; A1.z -= A1.x * A0.z; A1.w -= A1.x * A0.w;
A2.y -= A2.x * A0.y; A2.z -= A2.x * A0.z; A2.w -= A2.x * A0.w;
if(abs(A2.y) > abs(A1.y))
{
float4 TEMP = A2; A2 = A1; A1 = TEMP;
}
if(abs(A1.y) >= 1e-10)
{
A1.z /= A1.y; A1.w /= A1.y;
A2.z -= A2.y * A1.z; A2.w -= A2.y * A1.w;
if(abs(A2.z) >= 1e-10)
{
ds = A2.w / A2.z;
dy = A1.w - ds * A1.z;
dx = A0.w - ds * A0.z - dy * A0.y;
offset_test_passed =
fabs(data[1][1] + 0.5f * (dx * fx + dy * fy + ds * fs)) > dog_threshold
&&fabs(ds) < 1.0f && fabs(dx) < 1.0f && fabs(dy) < 1.0f;
}
}
}
}
if(offset_test_passed) result = v > nmax ? 1.0 : -1.0;
}
key_finish:
if(in_image) d_key[index] = make_float4(result, dx, dy, ds);
}
void ProgramCU::ComputeKEY(CuTexImage* dog, CuTexImage* key, float Tdog, float Tedge)
{
int width = dog->GetImgWidth(), height = dog->GetImgHeight();
float Tdog1 = (GlobalUtil::_SubpixelLocalization? 0.8f : 1.0f) * Tdog;
CuTexImage* dogp = dog - 1;
CuTexImage* dogn = dog + 1;
#ifdef KEY_OFFSET_ONE
dim3 grid((width - 1 + KEY_BLOCK_DIMX - 1)/ KEY_BLOCK_DIMX, (height - 1 + KEY_BLOCK_DIMY - 1)/KEY_BLOCK_DIMY);
#else
dim3 grid((width + KEY_BLOCK_DIMX - 1)/ KEY_BLOCK_DIMX, (height + KEY_BLOCK_DIMY - 1)/KEY_BLOCK_DIMY);
#endif
dim3 block(KEY_BLOCK_DIMX, KEY_BLOCK_DIMY);
dogp->BindTexture(texP);
dog ->BindTexture(texC);
dogn->BindTexture(texN);
Tedge = (Tedge+1)*(Tedge+1)/Tedge;
ComputeKEY_Kernel<<<grid, block>>>((float4*) key->_cuData, width,
width -1, height -1, Tdog1, Tdog, Tedge, GlobalUtil::_SubpixelLocalization);
}
void __global__ InitHist_Kernel(int4* hist, int ws, int wd, int height)
{
int row = IMUL(blockIdx.y, blockDim.y) + threadIdx.y;
int col = IMUL(blockIdx.x, blockDim.x) + threadIdx.x;
if(row < height && col < wd)
{
int hidx = IMUL(row, wd) + col;
int scol = col << 2;
int sidx = IMUL(row, ws) + scol;
int v[4] = {0, 0, 0, 0};
if(row > 0 && row < height -1)
{
#pragma unroll
for(int i = 0; i < 4 ; ++i, ++scol)
{
float4 temp = tex1Dfetch(texDataF4, sidx +i);
v[i] = (scol < ws -1 && scol > 0 && temp.x!=0) ? 1 : 0;
}
}
hist[hidx] = make_int4(v[0], v[1], v[2], v[3]);
}
}
void ProgramCU::InitHistogram(CuTexImage* key, CuTexImage* hist)
{
int ws = key->GetImgWidth(), hs = key->GetImgHeight();
int wd = hist->GetImgWidth(), hd = hist->GetImgHeight();
dim3 grid((wd + HIST_INIT_WIDTH - 1)/ HIST_INIT_WIDTH, hd);
dim3 block(HIST_INIT_WIDTH, 1);
key->BindTexture(texDataF4);
InitHist_Kernel<<<grid, block>>>((int4*) hist->_cuData, ws, wd, hd);
}
void __global__ ReduceHist_Kernel(int4* d_hist, int ws, int wd, int height)
{
int row = IMUL(blockIdx.y, blockDim.y) + threadIdx.y;
int col = IMUL(blockIdx.x, blockDim.x) + threadIdx.x;
if(row < height && col < wd)
{
int hidx = IMUL(row, wd) + col;
int scol = col << 2;
int sidx = IMUL(row, ws) + scol;
int v[4] = {0, 0, 0, 0};
#pragma unroll
for(int i = 0; i < 4 && scol < ws; ++i, ++scol)
{
int4 temp = tex1Dfetch(texDataI4, sidx + i);
v[i] = temp.x + temp.y + temp.z + temp.w;
}
d_hist[hidx] = make_int4(v[0], v[1], v[2], v[3]);
}
}
void ProgramCU::ReduceHistogram(CuTexImage*hist1, CuTexImage* hist2)
{
int ws = hist1->GetImgWidth(), hs = hist1->GetImgHeight();
int wd = hist2->GetImgWidth(), hd = hist2->GetImgHeight();
int temp = (int)floor(logf(float(wd * 2/ 3)) / logf(2.0f));
const int wi = min(7, max(temp , 0));
hist1->BindTexture(texDataI4);
const int BW = 1 << wi, BH = 1 << (7 - wi);
dim3 grid((wd + BW - 1)/ BW, (hd + BH -1) / BH);
dim3 block(BW, BH);
ReduceHist_Kernel<<<grid, block>>>((int4*)hist2->_cuData, ws, wd, hd);
}
void __global__ ListGen_Kernel(int4* d_list, int width)
{
int idx1 = IMUL(blockIdx.x, blockDim.x) + threadIdx.x;
int4 pos = tex1Dfetch(texDataList, idx1);
int idx2 = IMUL(pos.y, width) + pos.x;
int4 temp = tex1Dfetch(texDataI4, idx2);
int sum1 = temp.x + temp.y;
int sum2 = sum1 + temp.z;
pos.x <<= 2;
if(pos.z >= sum2)
{
pos.x += 3;
pos.z -= sum2;
}else if(pos.z >= sum1)
{
pos.x += 2;
pos.z -= sum1;
}else if(pos.z >= temp.x)
{
pos.x += 1;
pos.z -= temp.x;
}
d_list[idx1] = pos;
}
//input list (x, y) (x, y) ....
void ProgramCU::GenerateList(CuTexImage* list, CuTexImage* hist)
{
int len = list->GetImgWidth();
list->BindTexture(texDataList);
hist->BindTexture(texDataI4);
dim3 grid((len + LISTGEN_BLOCK_DIM -1) /LISTGEN_BLOCK_DIM);
dim3 block(LISTGEN_BLOCK_DIM);
ListGen_Kernel<<<grid, block>>>((int4*) list->_cuData, hist->GetImgWidth());
}
void __global__ ComputeOrientation_Kernel(float4* d_list,
int list_len,
int width, int height,
float sigma, float sigma_step,
float gaussian_factor, float sample_factor,
int num_orientation,
int existing_keypoint,
int subpixel,
int keepsign)
{
const float ten_degree_per_radius = 5.7295779513082320876798154814105;
const float radius_per_ten_degrees = 1.0 / 5.7295779513082320876798154814105;
int idx = IMUL(blockDim.x, blockIdx.x) + threadIdx.x;
if(idx >= list_len) return;
float4 key;
if(existing_keypoint)
{
key = tex1Dfetch(texDataF4, idx);
}else
{
int4 ikey = tex1Dfetch(texDataList, idx);
key.x = ikey.x + 0.5f;
key.y = ikey.y + 0.5f;
key.z = sigma;
if(subpixel || keepsign)
{
float4 offset = tex1Dfetch(texDataF4, IMUL(width, ikey.y) + ikey.x);
if(subpixel)
{
key.x += offset.y;
key.y += offset.z;
key.z *= pow(sigma_step, offset.w);
}
if(keepsign) key.z *= offset.x;
}
}
if(num_orientation == 0)
{
key.w = 0;
d_list[idx] = key;
return;
}
float vote[37];
float gsigma = key.z * gaussian_factor;
float win = fabs(key.z) * sample_factor;
float dist_threshold = win * win + 0.5;
float factor = -0.5f / (gsigma * gsigma);
float xmin = max(1.5f, floor(key.x - win) + 0.5f);
float ymin = max(1.5f, floor(key.y - win) + 0.5f);
float xmax = min(width - 1.5f, floor(key.x + win) + 0.5f);
float ymax = min(height -1.5f, floor(key.y + win) + 0.5f);
#pragma unroll
for(int i = 0; i < 36; ++i) vote[i] = 0.0f;
for(float y = ymin; y <= ymax; y += 1.0f)
{
for(float x = xmin; x <= xmax; x += 1.0f)
{
float dx = x - key.x;
float dy = y - key.y;
float sq_dist = dx * dx + dy * dy;
if(sq_dist >= dist_threshold) continue;
float2 got = tex2D(texDataF2, x, y);
float weight = got.x * exp(sq_dist * factor);
float fidx = floor(got.y * ten_degree_per_radius);
int oidx = fidx;
if(oidx < 0) oidx += 36;
vote[oidx] += weight;
}
}
//filter the vote
const float one_third = 1.0 /3.0;
#pragma unroll
for(int i = 0; i < 6; ++i)
{
vote[36] = vote[0];
float pre = vote[35];
#pragma unroll
for(int j = 0; j < 36; ++j)
{
float temp = one_third * (pre + vote[j] + vote[j + 1]);
pre = vote[j]; vote[j] = temp;
}
}
vote[36] = vote[0];
if(num_orientation == 1 || existing_keypoint)
{
int index_max = 0;
float max_vote = vote[0];
#pragma unroll
for(int i = 1; i < 36; ++i)
{
index_max = vote[i] > max_vote? i : index_max;
max_vote = max(max_vote, vote[i]);
}
float pre = vote[index_max == 0? 35 : index_max -1];
float next = vote[index_max + 1];
float weight = max_vote;
float off = 0.5f * FDIV(next - pre, weight + weight - next - pre);
key.w = radius_per_ten_degrees * (index_max + 0.5f + off);
d_list[idx] = key;
}else
{
float max_vote = vote[0];
#pragma unroll
for(int i = 1; i < 36; ++i) max_vote = max(max_vote, vote[i]);
float vote_threshold = max_vote * 0.8f;
float pre = vote[35];
float max_rot[2], max_vot[2] = {0, 0};
int ocount = 0;
#pragma unroll
for(int i =0; i < 36; ++i)
{
float next = vote[i + 1];
if(vote[i] > vote_threshold && vote[i] > pre && vote[i] > next)
{
float di = 0.5f * FDIV(next - pre, vote[i] + vote[i] - next - pre);
float rot = i + di + 0.5f;
float weight = vote[i];
///
if(weight > max_vot[1])
{
if(weight > max_vot[0])
{
max_vot[1] = max_vot[0];
max_rot[1] = max_rot[0];
max_vot[0] = weight;
max_rot[0] = rot;
}
else
{
max_vot[1] = weight;
max_rot[1] = rot;
}
ocount ++;
}
}
pre = vote[i];
}
float fr1 = max_rot[0] / 36.0f;
if(fr1 < 0) fr1 += 1.0f;
unsigned short us1 = ocount == 0? 65535 : ((unsigned short )floor(fr1 * 65535.0f));
unsigned short us2 = 65535;
if(ocount > 1)
{
float fr2 = max_rot[1] / 36.0f;
if(fr2 < 0) fr2 += 1.0f;
us2 = (unsigned short ) floor(fr2 * 65535.0f);
}
unsigned int uspack = (us2 << 16) | us1;
key.w = __int_as_float(uspack);
d_list[idx] = key;
}
}
void ProgramCU::ComputeOrientation(CuTexImage* list, CuTexImage* got, CuTexImage*key,
float sigma, float sigma_step, int existing_keypoint)
{
int len = list->GetImgWidth();
if(len <= 0) return;
int width = got->GetImgWidth(), height = got->GetImgHeight();
if(existing_keypoint)
{
list->BindTexture(texDataF4);
}else
{
list->BindTexture(texDataList);
if(GlobalUtil::_SubpixelLocalization) key->BindTexture(texDataF4);
}
got->BindTexture2D(texDataF2);
const int block_width = len < ORIENTATION_COMPUTE_PER_BLOCK ? 16 : ORIENTATION_COMPUTE_PER_BLOCK;
dim3 grid((len + block_width -1) / block_width);
dim3 block(block_width);
ComputeOrientation_Kernel<<<grid, block>>>((float4*) list->_cuData,
len, width, height, sigma, sigma_step,
GlobalUtil::_OrientationGaussianFactor,
GlobalUtil::_OrientationGaussianFactor * GlobalUtil::_OrientationWindowFactor,
GlobalUtil::_FixedOrientation? 0 : GlobalUtil::_MaxOrientation,
existing_keypoint, GlobalUtil::_SubpixelLocalization, GlobalUtil::_KeepExtremumSign);
ProgramCU::CheckErrorCUDA("ComputeOrientation");
}
template <bool DYNAMIC_INDEXING> void __global__ ComputeDescriptor_Kernel(float4* d_des, int num,
int width, int height, float window_factor)
{
const float rpi = 4.0/ 3.14159265358979323846;
int idx = IMUL(blockIdx.x, blockDim.x) + threadIdx.x;
int fidx = idx >> 4;
if(fidx >= num) return;
float4 key = tex1Dfetch(texDataF4, fidx);
int bidx = idx& 0xf, ix = bidx & 0x3, iy = bidx >> 2;
float spt = fabs(key.z * window_factor);
float s, c; __sincosf(key.w, &s, &c);
float anglef = key.w > 3.14159265358979323846? key.w - (2.0 * 3.14159265358979323846) : key.w ;
float cspt = c * spt, sspt = s * spt;
float crspt = c / spt, srspt = s / spt;
float2 offsetpt, pt;
float xmin, ymin, xmax, ymax, bsz;
offsetpt.x = ix - 1.5f;
offsetpt.y = iy - 1.5f;
pt.x = cspt * offsetpt.x - sspt * offsetpt.y + key.x;
pt.y = cspt * offsetpt.y + sspt * offsetpt.x + key.y;
bsz = fabs(cspt) + fabs(sspt);
xmin = max(1.5f, floor(pt.x - bsz) + 0.5f);
ymin = max(1.5f, floor(pt.y - bsz) + 0.5f);
xmax = min(width - 1.5f, floor(pt.x + bsz) + 0.5f);
ymax = min(height - 1.5f, floor(pt.y + bsz) + 0.5f);
float des[9];
#pragma unroll
for(int i =0; i < 9; ++i) des[i] = 0.0f;
for(float y = ymin; y <= ymax; y += 1.0f)
{
for(float x = xmin; x <= xmax; x += 1.0f)
{
float dx = x - pt.x;
float dy = y - pt.y;
float nx = crspt * dx + srspt * dy;
float ny = crspt * dy - srspt * dx;
float nxn = fabs(nx);
float nyn = fabs(ny);
if(nxn < 1.0f && nyn < 1.0f)
{
float2 cc = tex2D(texDataF2, x, y);
float dnx = nx + offsetpt.x;
float dny = ny + offsetpt.y;
float ww = exp(-0.125f * (dnx * dnx + dny * dny));
float wx = 1.0 - nxn;
float wy = 1.0 - nyn;
float weight = ww * wx * wy * cc.x;
float theta = (anglef - cc.y) * rpi;
if(theta < 0) theta += 8.0f;
float fo = floor(theta);
int fidx = fo;
float weight1 = fo + 1.0f - theta;
float weight2 = theta - fo;
if(DYNAMIC_INDEXING)
{
des[fidx] += (weight1 * weight);
des[fidx + 1] += (weight2 * weight);
//this dynamic indexing part might be slow
}else
{
#pragma unroll
for(int k = 0; k < 8; ++k)
{
if(k == fidx)
{
des[k] += (weight1 * weight);
des[k+1] += (weight2 * weight);
}
}
}
}
}
}
des[0] += des[8];
int didx = idx << 1;
d_des[didx] = make_float4(des[0], des[1], des[2], des[3]);
d_des[didx+1] = make_float4(des[4], des[5], des[6], des[7]);
}
template <bool DYNAMIC_INDEXING> void __global__ ComputeDescriptorRECT_Kernel(float4* d_des, int num,
int width, int height, float window_factor)
{
const float rpi = 4.0/ 3.14159265358979323846;
int idx = IMUL(blockIdx.x, blockDim.x) + threadIdx.x;
int fidx = idx >> 4;
if(fidx >= num) return;
float4 key = tex1Dfetch(texDataF4, fidx);
int bidx = idx& 0xf, ix = bidx & 0x3, iy = bidx >> 2;
//float aspect_ratio = key.w / key.z;
//float aspect_sq = aspect_ratio * aspect_ratio;
float sptx = key.z * 0.25, spty = key.w * 0.25;
float xmin, ymin, xmax, ymax; float2 pt;
pt.x = sptx * (ix + 0.5f) + key.x;
pt.y = spty * (iy + 0.5f) + key.y;
xmin = max(1.5f, floor(pt.x - sptx) + 0.5f);
ymin = max(1.5f, floor(pt.y - spty) + 0.5f);
xmax = min(width - 1.5f, floor(pt.x + sptx) + 0.5f);
ymax = min(height - 1.5f, floor(pt.y + spty) + 0.5f);
float des[9];
#pragma unroll
for(int i =0; i < 9; ++i) des[i] = 0.0f;
for(float y = ymin; y <= ymax; y += 1.0f)
{
for(float x = xmin; x <= xmax; x += 1.0f)
{
float nx = (x - pt.x) / sptx;
float ny = (y - pt.y) / spty;
float nxn = fabs(nx);
float nyn = fabs(ny);
if(nxn < 1.0f && nyn < 1.0f)
{
float2 cc = tex2D(texDataF2, x, y);
float wx = 1.0 - nxn;
float wy = 1.0 - nyn;
float weight = wx * wy * cc.x;
float theta = (- cc.y) * rpi;
if(theta < 0) theta += 8.0f;
float fo = floor(theta);
int fidx = fo;
float weight1 = fo + 1.0f - theta;
float weight2 = theta - fo;
if(DYNAMIC_INDEXING)
{
des[fidx] += (weight1 * weight);
des[fidx + 1] += (weight2 * weight);
//this dynamic indexing part might be slow
}else
{
#pragma unroll
for(int k = 0; k < 8; ++k)
{
if(k == fidx)
{
des[k] += (weight1 * weight);
des[k+1] += (weight2 * weight);
}
}
}
}
}
}
des[0] += des[8];
int didx = idx << 1;
d_des[didx] = make_float4(des[0], des[1], des[2], des[3]);
d_des[didx+1] = make_float4(des[4], des[5], des[6], des[7]);
}
void __global__ NormalizeDescriptor_Kernel(float4* d_des, int num)
{
float4 temp[32];
int idx = IMUL(blockIdx.x, blockDim.x) + threadIdx.x;
if(idx >= num) return;
int sidx = idx << 5;
float norm1 = 0, norm2 = 0;
#pragma unroll
for(int i = 0; i < 32; ++i)
{
temp[i] = tex1Dfetch(texDataF4, sidx +i);
norm1 += (temp[i].x * temp[i].x + temp[i].y * temp[i].y +
temp[i].z * temp[i].z + temp[i].w * temp[i].w);
}
norm1 = rsqrt(norm1);
#pragma unroll
for(int i = 0; i < 32; ++i)
{
temp[i].x = min(0.2f, temp[i].x * norm1);
temp[i].y = min(0.2f, temp[i].y * norm1);
temp[i].z = min(0.2f, temp[i].z * norm1);
temp[i].w = min(0.2f, temp[i].w * norm1);
norm2 += (temp[i].x * temp[i].x + temp[i].y * temp[i].y +
temp[i].z * temp[i].z + temp[i].w * temp[i].w);
}
norm2 = rsqrt(norm2);
#pragma unroll
for(int i = 0; i < 32; ++i)
{
temp[i].x *= norm2; temp[i].y *= norm2;
temp[i].z *= norm2; temp[i].w *= norm2;
d_des[sidx + i] = temp[i];
}
}
void ProgramCU::ComputeDescriptor(CuTexImage*list, CuTexImage* got, CuTexImage* dtex, int rect, int stream)
{
int num = list->GetImgWidth();
int width = got->GetImgWidth();
int height = got->GetImgHeight();
dtex->InitTexture(num * 128, 1, 1);
got->BindTexture2D(texDataF2);
list->BindTexture(texDataF4);
int block_width = DESCRIPTOR_COMPUTE_BLOCK_SIZE;
dim3 grid((num * 16 + block_width -1) / block_width);
dim3 block(block_width);
if(rect)
{
if(GlobalUtil::_UseDynamicIndexing)
ComputeDescriptorRECT_Kernel<true><<<grid, block>>>((float4*) dtex->_cuData, num, width, height, GlobalUtil::_DescriptorWindowFactor);
else
ComputeDescriptorRECT_Kernel<false><<<grid, block>>>((float4*) dtex->_cuData, num, width, height, GlobalUtil::_DescriptorWindowFactor);
}else
{
if(GlobalUtil::_UseDynamicIndexing)
ComputeDescriptor_Kernel<true><<<grid, block>>>((float4*) dtex->_cuData, num, width, height, GlobalUtil::_DescriptorWindowFactor);
else
ComputeDescriptor_Kernel<false><<<grid, block>>>((float4*) dtex->_cuData, num, width, height, GlobalUtil::_DescriptorWindowFactor);
}
if(GlobalUtil::_NormalizedSIFT)
{
dtex->BindTexture(texDataF4);
const int block_width = DESCRIPTOR_NORMALIZ_PER_BLOCK;
dim3 grid((num + block_width -1) / block_width);
dim3 block(block_width);
NormalizeDescriptor_Kernel<<<grid, block>>>((float4*) dtex->_cuData, num);
}
CheckErrorCUDA("ComputeDescriptor");
}
//////////////////////////////////////////////////////
void ProgramCU::FinishCUDA()
{
cudaThreadSynchronize();
}
int ProgramCU::CheckErrorCUDA(const char* location)
{
cudaError_t e = cudaGetLastError();
if(e)
{
if(location) fprintf(stderr, "%s:\t", location);
fprintf(stderr, "%s\n", cudaGetErrorString(e));
//assert(0);
return 1;
}else
{
return 0;
}
}
void __global__ ConvertDOG_Kernel(float* d_result, int width, int height)
{
int row = (blockIdx.y << BLOCK_LOG_DIM) + threadIdx.y;
int col = (blockIdx.x << BLOCK_LOG_DIM) + threadIdx.x;
if(col < width && row < height)
{
int index = row * width + col;
float v = tex1Dfetch(texData, index);
d_result[index] = (col == 0 || row == 0 || col == width -1 || row == height -1)?
0.5 : saturate(0.5+20.0*v);
}
}
///
void ProgramCU::DisplayConvertDOG(CuTexImage* dog, CuTexImage* out)
{
if(out->_cuData == NULL) return;
int width = dog->GetImgWidth(), height = dog ->GetImgHeight();
dog->BindTexture(texData);
dim3 grid((width + BLOCK_DIM - 1)/ BLOCK_DIM, (height + BLOCK_DIM - 1)/BLOCK_DIM);
dim3 block(BLOCK_DIM, BLOCK_DIM);
ConvertDOG_Kernel<<<grid, block>>>((float*) out->_cuData, width, height);
ProgramCU::CheckErrorCUDA("DisplayConvertDOG");
}
void __global__ ConvertGRD_Kernel(float* d_result, int width, int height)
{
int row = (blockIdx.y << BLOCK_LOG_DIM) + threadIdx.y;
int col = (blockIdx.x << BLOCK_LOG_DIM) + threadIdx.x;
if(col < width && row < height)
{
int index = row * width + col;
float v = tex1Dfetch(texData, index << 1);
d_result[index] = (col == 0 || row == 0 || col == width -1 || row == height -1)?
0 : saturate(5 * v);
}
}
void ProgramCU::DisplayConvertGRD(CuTexImage* got, CuTexImage* out)
{
if(out->_cuData == NULL) return;
int width = got->GetImgWidth(), height = got ->GetImgHeight();
got->BindTexture(texData);
dim3 grid((width + BLOCK_DIM - 1)/ BLOCK_DIM, (height + BLOCK_DIM - 1)/BLOCK_DIM);
dim3 block(BLOCK_DIM, BLOCK_DIM);
ConvertGRD_Kernel<<<grid, block>>>((float*) out->_cuData, width, height);
ProgramCU::CheckErrorCUDA("DisplayConvertGRD");
}
void __global__ ConvertKEY_Kernel(float4* d_result, int width, int height)
{
int row = (blockIdx.y << BLOCK_LOG_DIM) + threadIdx.y;
int col = (blockIdx.x << BLOCK_LOG_DIM) + threadIdx.x;
if(col < width && row < height)
{
int index = row * width + col;
float4 keyv = tex1Dfetch(texDataF4, index);
int is_key = (keyv.x == 1.0f || keyv.x == -1.0f);
int inside = col > 0 && row > 0 && row < height -1 && col < width - 1;
float v = inside? saturate(0.5 + 20 * tex1Dfetch(texData, index)) : 0.5;
d_result[index] = is_key && inside ?
(keyv.x > 0? make_float4(1.0f, 0, 0, 1.0f) : make_float4(0.0f, 1.0f, 0.0f, 1.0f)):
make_float4(v, v, v, 1.0f) ;
}
}
void ProgramCU::DisplayConvertKEY(CuTexImage* key, CuTexImage* dog, CuTexImage* out)
{
if(out->_cuData == NULL) return;
int width = key->GetImgWidth(), height = key ->GetImgHeight();
dog->BindTexture(texData);
key->BindTexture(texDataF4);
dim3 grid((width + BLOCK_DIM - 1)/ BLOCK_DIM, (height + BLOCK_DIM - 1)/BLOCK_DIM);
dim3 block(BLOCK_DIM, BLOCK_DIM);
ConvertKEY_Kernel<<<grid, block>>>((float4*) out->_cuData, width, height);
}
void __global__ DisplayKeyPoint_Kernel(float4 * d_result, int num)
{
int idx = IMUL(blockIdx.x, blockDim.x) + threadIdx.x;
if(idx >= num) return;
float4 v = tex1Dfetch(texDataF4, idx);
d_result[idx] = make_float4(v.x, v.y, 0, 1.0f);
}
void ProgramCU::DisplayKeyPoint(CuTexImage* ftex, CuTexImage* out)
{
int num = ftex->GetImgWidth();
int block_width = 64;
dim3 grid((num + block_width -1) /block_width);
dim3 block(block_width);
ftex->BindTexture(texDataF4);
DisplayKeyPoint_Kernel<<<grid, block>>>((float4*) out->_cuData, num);
ProgramCU::CheckErrorCUDA("DisplayKeyPoint");
}
void __global__ DisplayKeyBox_Kernel(float4* d_result, int num)
{
int idx = IMUL(blockIdx.x, blockDim.x) + threadIdx.x;
if(idx >= num) return;
int kidx = idx / 10, vidx = idx - IMUL(kidx , 10);
float4 v = tex1Dfetch(texDataF4, kidx);
float sz = fabs(v.z * 3.0f);
///////////////////////
float s, c; __sincosf(v.w, &s, &c);
///////////////////////
float dx = vidx == 0? 0 : ((vidx <= 4 || vidx >= 9)? sz : -sz);
float dy = vidx <= 1? 0 : ((vidx <= 2 || vidx >= 7)? -sz : sz);
float4 pos;
pos.x = v.x + c * dx - s * dy;
pos.y = v.y + c * dy + s * dx;
pos.z = 0; pos.w = 1.0f;
d_result[idx] = pos;
}
void ProgramCU::DisplayKeyBox(CuTexImage* ftex, CuTexImage* out)
{
int len = ftex->GetImgWidth();
int block_width = 32;
dim3 grid((len * 10 + block_width -1) / block_width);
dim3 block(block_width);
ftex->BindTexture(texDataF4);
DisplayKeyBox_Kernel<<<grid, block>>>((float4*) out->_cuData, len * 10);
}
///////////////////////////////////////////////////////////////////
inline void CuTexImage:: BindTexture(textureReference& texRef)
{
cudaBindTexture(NULL, &texRef, _cuData, &texRef.channelDesc, _numBytes);
}
inline void CuTexImage::BindTexture2D(textureReference& texRef)
{
#if defined(SIFTGPU_ENABLE_LINEAR_TEX2D)
cudaBindTexture2D(0, &texRef, _cuData, &texRef.channelDesc, _imgWidth, _imgHeight, _imgWidth* _numChannel* sizeof(float));
#else
cudaChannelFormatDesc desc;
cudaGetChannelDesc(&desc, _cuData2D);
cudaBindTextureToArray(&texRef, _cuData2D, &desc);
#endif
}
int ProgramCU::CheckCudaDevice(int device)
{
int count = 0, device_used;
if(cudaGetDeviceCount(&count) != cudaSuccess || count <= 0)
{
ProgramCU::CheckErrorCUDA("CheckCudaDevice");
return 0;
}else if(count == 1)
{
cudaDeviceProp deviceProp;
if ( cudaGetDeviceProperties(&deviceProp, 0) != cudaSuccess ||
(deviceProp.major == 9999 && deviceProp.minor == 9999))
{
fprintf(stderr, "CheckCudaDevice: no device supporting CUDA.\n");
return 0;
}else
{
GlobalUtil::_MemCapGPU = deviceProp.totalGlobalMem / 1024;
GlobalUtil::_texMaxDimGL = 32768;
if(GlobalUtil::_verbose)
fprintf(stdout, "NOTE: changing maximum texture dimension to %d\n", GlobalUtil::_texMaxDimGL);
}
}
if(device >0 && device < count)
{
cudaSetDevice(device);
CheckErrorCUDA("cudaSetDevice\n");
}
cudaGetDevice(&device_used);
if(device != device_used)
fprintf(stderr, "\nERROR: Cannot set device to %d\n"
"\nWARNING: Use # %d device instead (out of %d)\n", device, device_used, count);
return 1;
}
////////////////////////////////////////////////////////////////////////////////////////
// siftmatch funtions
//////////////////////////////////////////////////////////////////////////////////////////
#define MULT_TBLOCK_DIMX 128
#define MULT_TBLOCK_DIMY 1
#define MULT_BLOCK_DIMX (MULT_TBLOCK_DIMX)
#define MULT_BLOCK_DIMY (8 * MULT_TBLOCK_DIMY)
texture<uint4, 1, cudaReadModeElementType> texDes1;
texture<uint4, 1, cudaReadModeElementType> texDes2;
void __global__ MultiplyDescriptor_Kernel(int* d_result, int num1, int num2, int3* d_temp)
{
int idx01 = (blockIdx.y * MULT_BLOCK_DIMY), idx02 = (blockIdx.x * MULT_BLOCK_DIMX);
int idx1 = idx01 + threadIdx.y, idx2 = idx02 + threadIdx.x;
__shared__ int data1[17 * 2 * MULT_BLOCK_DIMY];
int read_idx1 = idx01 * 8 + threadIdx.x, read_idx2 = idx2 * 8;
int col4 = threadIdx.x & 0x3, row4 = threadIdx.x >> 2;
int cache_idx1 = IMUL(row4, 17) + (col4 << 2);
///////////////////////////////////////////////////////////////
//Load feature descriptors
///////////////////////////////////////////////////////////////
#if MULT_BLOCK_DIMY == 16
uint4 v = tex1Dfetch(texDes1, read_idx1);
data1[cache_idx1] = v.x; data1[cache_idx1+1] = v.y;
data1[cache_idx1+2] = v.z; data1[cache_idx1+3] = v.w;
#elif MULT_BLOCK_DIMY == 8
if(threadIdx.x < 64)
{
uint4 v = tex1Dfetch(texDes1, read_idx1);
data1[cache_idx1] = v.x; data1[cache_idx1+1] = v.y;
data1[cache_idx1+2] = v.z; data1[cache_idx1+3] = v.w;
}
#else
#error
#endif
__syncthreads();
///
if(idx2 >= num2) return;
///////////////////////////////////////////////////////////////////////////
//compare descriptors
int results[MULT_BLOCK_DIMY];
#pragma unroll
for(int i = 0; i < MULT_BLOCK_DIMY; ++i) results[i] = 0;
#pragma unroll
for(int i = 0; i < 8; ++i)
{
uint4 v = tex1Dfetch(texDes2, read_idx2 + i);
unsigned char* p2 = (unsigned char*)(&v);
#pragma unroll
for(int k = 0; k < MULT_BLOCK_DIMY; ++k)
{
unsigned char* p1 = (unsigned char*) (data1 + k * 34 + i * 4 + (i/4));
results[k] += ( IMUL(p1[0], p2[0]) + IMUL(p1[1], p2[1])
+ IMUL(p1[2], p2[2]) + IMUL(p1[3], p2[3])
+ IMUL(p1[4], p2[4]) + IMUL(p1[5], p2[5])
+ IMUL(p1[6], p2[6]) + IMUL(p1[7], p2[7])
+ IMUL(p1[8], p2[8]) + IMUL(p1[9], p2[9])
+ IMUL(p1[10], p2[10]) + IMUL(p1[11], p2[11])
+ IMUL(p1[12], p2[12]) + IMUL(p1[13], p2[13])
+ IMUL(p1[14], p2[14]) + IMUL(p1[15], p2[15]));
}
}
int dst_idx = IMUL(idx1, num2) + idx2;
if(d_temp)
{
int3 cmp_result = make_int3(0, -1, 0);
#pragma unroll
for(int i = 0; i < MULT_BLOCK_DIMY; ++i)
{
if(idx1 + i < num1)
{
cmp_result = results[i] > cmp_result.x?
make_int3(results[i], idx1 + i, cmp_result.x) :
make_int3(cmp_result.x, cmp_result.y, max(cmp_result.z, results[i]));
d_result[dst_idx + IMUL(i, num2)] = results[i];
}
}
d_temp[ IMUL(blockIdx.y, num2) + idx2] = cmp_result;
}else
{
#pragma unroll
for(int i = 0; i < MULT_BLOCK_DIMY; ++i)
{
if(idx1 + i < num1) d_result[dst_idx + IMUL(i, num2)] = results[i];
}
}
}
void ProgramCU::MultiplyDescriptor(CuTexImage* des1, CuTexImage* des2, CuTexImage* texDot, CuTexImage* texCRT)
{
int num1 = des1->GetImgWidth() / 8;
int num2 = des2->GetImgWidth() / 8;
dim3 grid( (num2 + MULT_BLOCK_DIMX - 1)/ MULT_BLOCK_DIMX,
(num1 + MULT_BLOCK_DIMY - 1)/MULT_BLOCK_DIMY);
dim3 block(MULT_TBLOCK_DIMX, MULT_TBLOCK_DIMY);
texDot->InitTexture( num2,num1);
if(texCRT) texCRT->InitTexture(num2, (num1 + MULT_BLOCK_DIMY - 1)/MULT_BLOCK_DIMY, 32);
des1->BindTexture(texDes1);
des2->BindTexture(texDes2);
MultiplyDescriptor_Kernel<<<grid, block>>>((int*)texDot->_cuData, num1, num2,
(texCRT? (int3*)texCRT->_cuData : NULL));
}
texture<float, 1, cudaReadModeElementType> texLoc1;
texture<float2, 1, cudaReadModeElementType> texLoc2;
struct Matrix33{float mat[3][3];};
void __global__ MultiplyDescriptorG_Kernel(int* d_result, int num1, int num2, int3* d_temp,
Matrix33 H, float hdistmax, Matrix33 F, float fdistmax)
{
int idx01 = (blockIdx.y * MULT_BLOCK_DIMY);
int idx02 = (blockIdx.x * MULT_BLOCK_DIMX);
int idx1 = idx01 + threadIdx.y;
int idx2 = idx02 + threadIdx.x;
__shared__ int data1[17 * 2 * MULT_BLOCK_DIMY];
__shared__ float loc1[MULT_BLOCK_DIMY * 2];
int read_idx1 = idx01 * 8 + threadIdx.x ;
int read_idx2 = idx2 * 8;
int col4 = threadIdx.x & 0x3, row4 = threadIdx.x >> 2;
int cache_idx1 = IMUL(row4, 17) + (col4 << 2);
#if MULT_BLOCK_DIMY == 16
uint4 v = tex1Dfetch(texDes1, read_idx1);
data1[cache_idx1] = v.x;
data1[cache_idx1+1] = v.y;
data1[cache_idx1+2] = v.z;
data1[cache_idx1+3] = v.w;
#elif MULT_BLOCK_DIMY == 8
if(threadIdx.x < 64)
{
uint4 v = tex1Dfetch(texDes1, read_idx1);
data1[cache_idx1] = v.x;
data1[cache_idx1+1] = v.y;
data1[cache_idx1+2] = v.z;
data1[cache_idx1+3] = v.w;
}
#else
#error
#endif
__syncthreads();
if(threadIdx.x < MULT_BLOCK_DIMY * 2)
{
loc1[threadIdx.x] = tex1Dfetch(texLoc1, 2 * idx01 + threadIdx.x);
}
__syncthreads();
if(idx2 >= num2) return;
int results[MULT_BLOCK_DIMY];
/////////////////////////////////////////////////////////////////////////////////////////////
//geometric verification
/////////////////////////////////////////////////////////////////////////////////////////////
int good_count = 0;
float2 loc2 = tex1Dfetch(texLoc2, idx2);
#pragma unroll
for(int i = 0; i < MULT_BLOCK_DIMY; ++i)
{
if(idx1 + i < num1)
{
float* loci = loc1 + i * 2;
float locx = loci[0], locy = loci[1];
//homography
float x[3], diff[2];
x[0] = H.mat[0][0] * locx + H.mat[0][1] * locy + H.mat[0][2];
x[1] = H.mat[1][0] * locx + H.mat[1][1] * locy + H.mat[1][2];
x[2] = H.mat[2][0] * locx + H.mat[2][1] * locy + H.mat[2][2];
diff[0] = FDIV(x[0], x[2]) - loc2.x;
diff[1] = FDIV(x[1], x[2]) - loc2.y;
float hdist = diff[0] * diff[0] + diff[1] * diff[1];
if(hdist < hdistmax)
{
//check fundamental matrix
float fx1[3], ftx2[3], x2fx1, se;
fx1[0] = F.mat[0][0] * locx + F.mat[0][1] * locy + F.mat[0][2];
fx1[1] = F.mat[1][0] * locx + F.mat[1][1] * locy + F.mat[1][2];
fx1[2] = F.mat[2][0] * locx + F.mat[2][1] * locy + F.mat[2][2];
ftx2[0] = F.mat[0][0] * loc2.x + F.mat[1][0] * loc2.y + F.mat[2][0];
ftx2[1] = F.mat[0][1] * loc2.x + F.mat[1][1] * loc2.y + F.mat[2][1];
//ftx2[2] = F.mat[0][2] * loc2.x + F.mat[1][2] * loc2.y + F.mat[2][2];
x2fx1 = loc2.x * fx1[0] + loc2.y * fx1[1] + fx1[2];
se = FDIV(x2fx1 * x2fx1, fx1[0] * fx1[0] + fx1[1] * fx1[1] + ftx2[0] * ftx2[0] + ftx2[1] * ftx2[1]);
results[i] = se < fdistmax? 0: -262144;
}else
{
results[i] = -262144;
}
}else
{
results[i] = -262144;
}
good_count += (results[i] >=0);
}
/////////////////////////////////////////////////////////////////////////////////////////////
///compare feature descriptors anyway
/////////////////////////////////////////////////////////////////////////////////////////////
if(good_count > 0)
{
#pragma unroll
for(int i = 0; i < 8; ++i)
{
uint4 v = tex1Dfetch(texDes2, read_idx2 + i);
unsigned char* p2 = (unsigned char*)(&v);
#pragma unroll
for(int k = 0; k < MULT_BLOCK_DIMY; ++k)
{
unsigned char* p1 = (unsigned char*) (data1 + k * 34 + i * 4 + (i/4));
results[k] += ( IMUL(p1[0], p2[0]) + IMUL(p1[1], p2[1])
+ IMUL(p1[2], p2[2]) + IMUL(p1[3], p2[3])
+ IMUL(p1[4], p2[4]) + IMUL(p1[5], p2[5])
+ IMUL(p1[6], p2[6]) + IMUL(p1[7], p2[7])
+ IMUL(p1[8], p2[8]) + IMUL(p1[9], p2[9])
+ IMUL(p1[10], p2[10]) + IMUL(p1[11], p2[11])
+ IMUL(p1[12], p2[12]) + IMUL(p1[13], p2[13])
+ IMUL(p1[14], p2[14]) + IMUL(p1[15], p2[15]));
}
}
}
int dst_idx = IMUL(idx1, num2) + idx2;
if(d_temp)
{
int3 cmp_result = make_int3(0, -1, 0);
#pragma unroll
for(int i= 0; i < MULT_BLOCK_DIMY; ++i)
{
if(idx1 + i < num1)
{
cmp_result = results[i] > cmp_result.x?
make_int3(results[i], idx1 + i, cmp_result.x) :
make_int3(cmp_result.x, cmp_result.y, max(cmp_result.z, results[i]));
d_result[dst_idx + IMUL(i, num2)] = max(results[i], 0);
}else
{
break;
}
}
d_temp[ IMUL(blockIdx.y, num2) + idx2] = cmp_result;
}else
{
#pragma unroll
for(int i = 0; i < MULT_BLOCK_DIMY; ++i)
{
if(idx1 + i < num1) d_result[dst_idx + IMUL(i, num2)] = max(results[i], 0);
else break;
}
}
}
void ProgramCU::MultiplyDescriptorG(CuTexImage* des1, CuTexImage* des2,
CuTexImage* loc1, CuTexImage* loc2, CuTexImage* texDot, CuTexImage* texCRT,
float* H, float hdistmax, float* F, float fdistmax)
{
int num1 = des1->GetImgWidth() / 8;
int num2 = des2->GetImgWidth() / 8;
Matrix33 MatF, MatH;
//copy the matrix
memcpy(MatF.mat, F, 9 * sizeof(float));
memcpy(MatH.mat, H, 9 * sizeof(float));
//thread blocks
dim3 grid( (num2 + MULT_BLOCK_DIMX - 1)/ MULT_BLOCK_DIMX,
(num1 + MULT_BLOCK_DIMY - 1)/MULT_BLOCK_DIMY);
dim3 block(MULT_TBLOCK_DIMX, MULT_TBLOCK_DIMY);
//intermediate results
texDot->InitTexture( num2,num1);
if(texCRT) texCRT->InitTexture( num2, (num1 + MULT_BLOCK_DIMY - 1)/MULT_BLOCK_DIMY, 3);
loc1->BindTexture(texLoc1);
loc2->BindTexture(texLoc2);
des1->BindTexture(texDes1);
des2->BindTexture(texDes2);
MultiplyDescriptorG_Kernel<<<grid, block>>>((int*)texDot->_cuData, num1, num2,
(texCRT? (int3*)texCRT->_cuData : NULL),
MatH, hdistmax, MatF, fdistmax);
}
texture<int, 1, cudaReadModeElementType> texDOT;
#define ROWMATCH_BLOCK_WIDTH 32
#define ROWMATCH_BLOCK_HEIGHT 1
void __global__ RowMatch_Kernel(int*d_dot, int* d_result, int num2, float distmax, float ratiomax)
{
#if ROWMATCH_BLOCK_HEIGHT == 1
__shared__ int dotmax[ROWMATCH_BLOCK_WIDTH];
__shared__ int dotnxt[ROWMATCH_BLOCK_WIDTH];
__shared__ int dotidx[ROWMATCH_BLOCK_WIDTH];
int row = blockIdx.y;
#else
__shared__ int x_dotmax[ROWMATCH_BLOCK_HEIGHT][ROWMATCH_BLOCK_WIDTH];
__shared__ int x_dotnxt[ROWMATCH_BLOCK_HEIGHT][ROWMATCH_BLOCK_WIDTH];
__shared__ int x_dotidx[ROWMATCH_BLOCK_HEIGHT][ROWMATCH_BLOCK_WIDTH];
int* dotmax = x_dotmax[threadIdx.y];
int* dotnxt = x_dotnxt[threadIdx.y];
int* dotidx = x_dotidx[threadIdx.y];
int row = IMUL(blockIdx.y, ROWMATCH_BLOCK_HEIGHT) + threadIdx.y;
#endif
int base_address = IMUL(row , num2);
int t_dotmax = 0, t_dotnxt = 0, t_dotidx = -1;
for(int i = 0; i < num2; i += ROWMATCH_BLOCK_WIDTH)
{
if(threadIdx.x + i < num2)
{
int v = d_dot[base_address + threadIdx.x + i]; // tex1Dfetch(texDOT, base_address + threadIdx.x + i);
bool test = v > t_dotmax;
t_dotnxt = test? t_dotmax : max(t_dotnxt, v);
t_dotidx = test? (threadIdx.x + i) : t_dotidx;
t_dotmax = test? v: t_dotmax;
}
__syncthreads();
}
dotmax[threadIdx.x] = t_dotmax;
dotnxt[threadIdx.x] = t_dotnxt;
dotidx[threadIdx.x] = t_dotidx;
__syncthreads();
#pragma unroll
for(int step = ROWMATCH_BLOCK_WIDTH/2; step >0; step /= 2)
{
if(threadIdx.x < step)
{
int v1 = dotmax[threadIdx.x], v2 = dotmax[threadIdx.x + step];
bool test = v2 > v1;
dotnxt[threadIdx.x] = test? max(v1, dotnxt[threadIdx.x + step]) :max(dotnxt[threadIdx.x], v2);
dotidx[threadIdx.x] = test? dotidx[threadIdx.x + step] : dotidx[threadIdx.x];
dotmax[threadIdx.x] = test? v2 : v1;
}
__syncthreads();
}
if(threadIdx.x == 0)
{
float dist = acos(min(dotmax[0] * 0.000003814697265625f, 1.0));
float distn = acos(min(dotnxt[0] * 0.000003814697265625f, 1.0));
//float ratio = dist / distn;
d_result[row] = (dist < distmax) && (dist < distn * ratiomax) ? dotidx[0] : -1;//? : -1;
}
}
void ProgramCU::GetRowMatch(CuTexImage* texDot, CuTexImage* texMatch, float distmax, float ratiomax)
{
int num1 = texDot->GetImgHeight();
int num2 = texDot->GetImgWidth();
dim3 grid(1, num1/ROWMATCH_BLOCK_HEIGHT);
dim3 block(ROWMATCH_BLOCK_WIDTH, ROWMATCH_BLOCK_HEIGHT);
// texDot->BindTexture(texDOT);
RowMatch_Kernel<<<grid, block>>>((int*)texDot->_cuData,
(int*)texMatch->_cuData, num2, distmax, ratiomax);
}
#define COLMATCH_BLOCK_WIDTH 32
//texture<int3, 1, cudaReadModeElementType> texCT;
void __global__ ColMatch_Kernel(int3*d_crt, int* d_result, int height, int num2, float distmax, float ratiomax)
{
int col = COLMATCH_BLOCK_WIDTH * blockIdx.x + threadIdx.x;
if(col >= num2) return;
int3 result = d_crt[col];//tex1Dfetch(texCT, col);
int read_idx = col + num2;
for(int i = 1; i < height; ++i, read_idx += num2)
{
int3 temp = d_crt[read_idx];//tex1Dfetch(texCT, read_idx);
result = result.x < temp.x?
make_int3(temp.x, temp.y, max(result.x, temp.z)) :
make_int3(result.x, result.y, max(result.z, temp.x));
}
float dist = acos(min(result.x * 0.000003814697265625f, 1.0));
float distn = acos(min(result.z * 0.000003814697265625f, 1.0));
//float ratio = dist / distn;
d_result[col] = (dist < distmax) && (dist < distn * ratiomax) ? result.y : -1;//? : -1;
}
void ProgramCU::GetColMatch(CuTexImage* texCRT, CuTexImage* texMatch, float distmax, float ratiomax)
{
int height = texCRT->GetImgHeight();
int num2 = texCRT->GetImgWidth();
//texCRT->BindTexture(texCT);
dim3 grid((num2 + COLMATCH_BLOCK_WIDTH -1) / COLMATCH_BLOCK_WIDTH);
dim3 block(COLMATCH_BLOCK_WIDTH);
ColMatch_Kernel<<<grid, block>>>((int3*)texCRT->_cuData, (int*) texMatch->_cuData, height, num2, distmax, ratiomax);
}
#endif
|