1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
|
// Copyright (c) 2018, ETH Zurich and UNC Chapel Hill.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: Johannes L. Schoenberger (jsch at inf.ethz.ch)
#ifndef COLMAP_SRC_RETRIEVAL_VISUAL_INDEX_H_
#define COLMAP_SRC_RETRIEVAL_VISUAL_INDEX_H_
#include <boost/heap/fibonacci_heap.hpp>
#include <Eigen/Core>
#include "FLANN/flann.hpp"
#include "feature/types.h"
#include "retrieval/inverted_file.h"
#include "retrieval/inverted_index.h"
#include "retrieval/vote_and_verify.h"
#include "util/alignment.h"
#include "util/endian.h"
#include "util/logging.h"
#include "util/math.h"
namespace colmap {
namespace retrieval {
// Visual index for image retrieval using a vocabulary tree with Hamming
// embedding, based on the papers:
//
// Schönberger, Price, Sattler, Pollefeys, Frahm. "A Vote-and-Verify Strategy
// for Fast Spatial Verification in Image Retrieval". ACCV 2016.
//
// Arandjelovic, Zisserman: Scalable descriptor
// distinctiveness for location recognition. ACCV 2014.
template <typename kDescType = uint8_t, int kDescDim = 128,
int kEmbeddingDim = 64>
class VisualIndex {
public:
static const int kMaxNumThreads = -1;
typedef InvertedIndex<kDescType, kDescDim, kEmbeddingDim> InvertedIndexType;
typedef FeatureKeypoints GeomType;
typedef typename InvertedIndexType::DescType DescType;
typedef typename InvertedIndexType::EntryType EntryType;
struct IndexOptions {
// The number of nearest neighbor visual words that each feature descriptor
// is assigned to.
int num_neighbors = 1;
// The number of checks in the nearest neighbor search.
int num_checks = 256;
// The number of threads used in the index.
int num_threads = kMaxNumThreads;
};
struct QueryOptions {
// The maximum number of most similar images to retrieve.
int max_num_images = -1;
// The number of nearest neighbor visual words that each feature descriptor
// is assigned to.
int num_neighbors = 5;
// The number of checks in the nearest neighbor search.
int num_checks = 256;
// Whether to perform spatial verification after image retrieval.
int num_images_after_verification = 0;
// The number of threads used in the index.
int num_threads = kMaxNumThreads;
};
struct BuildOptions {
// The desired number of visual words, i.e. the number of leaf node
// clusters. Note that the actual number of visual words might be less.
int num_visual_words = 256 * 256;
// The branching factor of the hierarchical k-means tree.
int branching = 256;
// The number of iterations for the clustering.
int num_iterations = 11;
// The target precision of the visual word search index.
double target_precision = 0.95;
// The number of checks in the nearest neighbor search.
int num_checks = 256;
// The number of threads used in the index.
int num_threads = kMaxNumThreads;
};
VisualIndex();
~VisualIndex();
size_t NumVisualWords() const;
// Add image to the visual index.
void Add(const IndexOptions& options, const int image_id,
const GeomType& geometries, const DescType& descriptors);
// Check if an image has been indexed.
bool ImageIndexed(const int image_id) const;
// Query for most similar images in the visual index.
void Query(const QueryOptions& options, const DescType& descriptors,
std::vector<ImageScore>* image_scores) const;
// Query for most similar images in the visual index.
void Query(const QueryOptions& options, const GeomType& geometries,
const DescType& descriptors,
std::vector<ImageScore>* image_scores) const;
// Prepare the index after adding images and before querying.
void Prepare();
// Build a visual index from a set of training descriptors by quantizing the
// descriptor space into visual words and compute their Hamming embedding.
void Build(const BuildOptions& options, const DescType& descriptors);
// Read and write the visual index. This can be done for an index with and
// without indexed images.
void Read(const std::string& path);
void Write(const std::string& path);
private:
// Quantize the descriptor space into visual words.
void Quantize(const BuildOptions& options, const DescType& descriptors);
// Query for nearest neighbor images and return nearest neighbor visual word
// identifiers for each descriptor.
void QueryAndFindWordIds(const QueryOptions& options,
const DescType& descriptors,
std::vector<ImageScore>* image_scores,
Eigen::MatrixXi* word_ids) const;
// Find the nearest neighbor visual words for the given descriptors.
Eigen::MatrixXi FindWordIds(const DescType& descriptors,
const int num_neighbors, const int num_checks,
const int num_threads) const;
// The search structure on the quantized descriptor space.
flann::AutotunedIndex<flann::L2<kDescType>> visual_word_index_;
// The centroids of the visual words.
flann::Matrix<kDescType> visual_words_;
// The inverted index of the database.
InvertedIndexType inverted_index_;
// Identifiers of all indexed images.
std::unordered_set<int> image_ids_;
// Whether the index is prepared.
bool prepared_;
};
////////////////////////////////////////////////////////////////////////////////
// Implementation
////////////////////////////////////////////////////////////////////////////////
template <typename kDescType, int kDescDim, int kEmbeddingDim>
VisualIndex<kDescType, kDescDim, kEmbeddingDim>::VisualIndex()
: prepared_(false) {}
template <typename kDescType, int kDescDim, int kEmbeddingDim>
VisualIndex<kDescType, kDescDim, kEmbeddingDim>::~VisualIndex() {
if (visual_words_.ptr() != nullptr) {
delete[] visual_words_.ptr();
}
}
template <typename kDescType, int kDescDim, int kEmbeddingDim>
size_t VisualIndex<kDescType, kDescDim, kEmbeddingDim>::NumVisualWords() const {
return visual_words_.rows;
}
template <typename kDescType, int kDescDim, int kEmbeddingDim>
void VisualIndex<kDescType, kDescDim, kEmbeddingDim>::Add(
const IndexOptions& options, const int image_id, const GeomType& geometries,
const DescType& descriptors) {
CHECK_EQ(geometries.size(), descriptors.rows());
// If the image is already indexed, do nothing.
if (ImageIndexed(image_id)) {
return;
}
image_ids_.insert(image_id);
prepared_ = false;
if (descriptors.rows() == 0) {
return;
}
const Eigen::MatrixXi word_ids =
FindWordIds(descriptors, options.num_neighbors, options.num_checks,
options.num_threads);
for (typename DescType::Index i = 0; i < descriptors.rows(); ++i) {
const auto& descriptor = descriptors.row(i);
typename InvertedIndexType::GeomType geometry;
geometry.x = geometries[i].x;
geometry.y = geometries[i].y;
geometry.scale = geometries[i].ComputeScale();
geometry.orientation = geometries[i].ComputeOrientation();
for (int n = 0; n < options.num_neighbors; ++n) {
const int word_id = word_ids(i, n);
if (word_id != InvertedIndexType::kInvalidWordId) {
inverted_index_.AddEntry(image_id, word_id, i, descriptor, geometry);
}
}
}
}
template <typename kDescType, int kDescDim, int kEmbeddingDim>
bool VisualIndex<kDescType, kDescDim, kEmbeddingDim>::ImageIndexed(
const int image_id) const {
return image_ids_.count(image_id) != 0;
}
template <typename kDescType, int kDescDim, int kEmbeddingDim>
void VisualIndex<kDescType, kDescDim, kEmbeddingDim>::Query(
const QueryOptions& options,
const DescType& descriptors, std::vector<ImageScore>* image_scores) const {
const GeomType geometries;
Query(options, geometries, descriptors, image_scores);
}
template <typename kDescType, int kDescDim, int kEmbeddingDim>
void VisualIndex<kDescType, kDescDim, kEmbeddingDim>::Query(
const QueryOptions& options, const GeomType& geometries,
const DescType& descriptors, std::vector<ImageScore>* image_scores) const {
Eigen::MatrixXi word_ids;
QueryAndFindWordIds(options, descriptors, image_scores, &word_ids);
if (options.num_images_after_verification <= 0) {
return;
}
CHECK_EQ(descriptors.rows(), geometries.size());
// Extract top-ranked images to verify.
std::unordered_set<int> image_ids;
for (const auto& image_score : *image_scores) {
image_ids.insert(image_score.image_id);
}
// Find matches for top-ranked images
typedef std::vector<
std::pair<float, std::pair<const EntryType*, const EntryType*>>>
OrderedMatchListType;
// Reference our matches (with their lowest distance) for both
// {query feature => db feature} and vice versa.
std::unordered_map<int, std::unordered_map<int, OrderedMatchListType>>
query_to_db_matches;
std::unordered_map<int, std::unordered_map<int, OrderedMatchListType>>
db_to_query_matches;
std::vector<const EntryType*> word_matches;
std::vector<EntryType> query_entries; // Convert query features, too.
query_entries.reserve(descriptors.rows());
// NOTE: Currently, we are redundantly computing the feature weighting.
const HammingDistWeightFunctor<kEmbeddingDim> hamming_dist_weight_functor;
for (typename DescType::Index i = 0; i < descriptors.rows(); ++i) {
const auto& descriptor = descriptors.row(i);
EntryType query_entry;
query_entry.feature_idx = i;
query_entry.geometry.x = geometries[i].x;
query_entry.geometry.y = geometries[i].y;
query_entry.geometry.scale = geometries[i].ComputeScale();
query_entry.geometry.orientation = geometries[i].ComputeOrientation();
query_entries.push_back(query_entry);
// For each db feature, keep track of the lowest distance (if db features
// are mapped to more than one visual word).
std::unordered_map<
int, std::unordered_map<int, std::pair<float, const EntryType*>>>
image_matches;
for (int j = 0; j < word_ids.cols(); ++j) {
const int word_id = word_ids(i, j);
if (word_id != InvertedIndexType::kInvalidWordId) {
inverted_index_.ConvertToBinaryDescriptor(word_id, descriptor,
&query_entries[i].descriptor);
const auto idf_weight = inverted_index_.GetIDFWeight(word_id);
const auto squared_idf_weight = idf_weight * idf_weight;
inverted_index_.FindMatches(word_id, image_ids, &word_matches);
for (const auto& match : word_matches) {
const size_t hamming_dist =
(query_entries[i].descriptor ^ match->descriptor).count();
if (hamming_dist <= hamming_dist_weight_functor.kMaxHammingDistance) {
const float dist =
hamming_dist_weight_functor(hamming_dist) * squared_idf_weight;
auto& feature_matches = image_matches[match->image_id];
const auto feature_match = feature_matches.find(match->feature_idx);
if (feature_match == feature_matches.end() ||
feature_match->first < dist) {
feature_matches[match->feature_idx] = std::make_pair(dist, match);
}
}
}
}
}
// Finally, cross-reference the query and db feature matches.
for (const auto& feature_matches : image_matches) {
const auto image_id = feature_matches.first;
for (const auto& feature_match : feature_matches.second) {
const auto feature_idx = feature_match.first;
const auto dist = feature_match.second.first;
const auto db_match = feature_match.second.second;
const auto entry_pair = std::make_pair(&query_entries[i], db_match);
query_to_db_matches[image_id][i].emplace_back(dist, entry_pair);
db_to_query_matches[image_id][feature_idx].emplace_back(dist,
entry_pair);
}
}
}
// Verify top-ranked images using the found matches.
for (auto& image_score : *image_scores) {
auto& query_matches = query_to_db_matches[image_score.image_id];
auto& db_matches = db_to_query_matches[image_score.image_id];
// No matches found.
if (query_matches.empty()) {
continue;
}
// Enforce 1-to-1 matching: Build Fibonacci heaps for the query and database
// features, ordered by the minimum number of matches per feature. We'll
// select these matches one at a time. For convenience, we'll also pre-sort
// the matched feature lists by matching score.
typedef boost::heap::fibonacci_heap<std::pair<int, int>> FibonacciHeapType;
FibonacciHeapType query_heap;
FibonacciHeapType db_heap;
std::unordered_map<int, typename FibonacciHeapType::handle_type>
query_heap_handles;
std::unordered_map<int, typename FibonacciHeapType::handle_type>
db_heap_handles;
for (auto& match_data : query_matches) {
std::sort(match_data.second.begin(), match_data.second.end(),
std::greater<std::pair<
float, std::pair<const EntryType*, const EntryType*>>>());
query_heap_handles[match_data.first] = query_heap.push(std::make_pair(
-static_cast<int>(match_data.second.size()), match_data.first));
}
for (auto& match_data : db_matches) {
std::sort(match_data.second.begin(), match_data.second.end(),
std::greater<std::pair<
float, std::pair<const EntryType*, const EntryType*>>>());
db_heap_handles[match_data.first] = db_heap.push(std::make_pair(
-static_cast<int>(match_data.second.size()), match_data.first));
}
// Keep tabs on what features have been already matched.
std::vector<FeatureGeometryMatch> matches;
auto db_top = db_heap.top(); // (-num_available_matches, feature_idx)
auto query_top = query_heap.top();
while (!db_heap.empty() && !query_heap.empty()) {
// Take the query or database feature with the smallest number of
// available matches.
const bool use_query =
(query_top.first >= db_top.first) && !query_heap.empty();
// Find the best matching feature that hasn't already been matched.
auto& heap1 = (use_query) ? query_heap : db_heap;
auto& heap2 = (use_query) ? db_heap : query_heap;
auto& handles1 = (use_query) ? query_heap_handles : db_heap_handles;
auto& handles2 = (use_query) ? db_heap_handles : query_heap_handles;
auto& matches1 = (use_query) ? query_matches : db_matches;
auto& matches2 = (use_query) ? db_matches : query_matches;
const auto idx1 = heap1.top().second;
heap1.pop();
// Entries that have been matched (or processed and subsequently ignored)
// get their handles removed.
if (handles1.count(idx1) > 0) {
handles1.erase(idx1);
bool match_found = false;
// The matches have been ordered by Hamming distance, already --
// select the lowest available match.
for (auto& entry2 : matches1[idx1]) {
const auto idx2 = (use_query) ? entry2.second.second->feature_idx
: entry2.second.first->feature_idx;
if (handles2.count(idx2) > 0) {
if (!match_found) {
match_found = true;
FeatureGeometryMatch match;
match.geometry1 = entry2.second.first->geometry;
match.geometries2.push_back(entry2.second.second->geometry);
matches.push_back(match);
handles2.erase(idx2);
// Remove this feature from consideration for all other features
// that matched to it.
for (auto& entry1 : matches2[idx2]) {
const auto other_idx1 = (use_query)
? entry1.second.first->feature_idx
: entry1.second.second->feature_idx;
if (handles1.count(other_idx1) > 0) {
(*handles1[other_idx1]).first += 1;
heap1.increase(handles1[other_idx1]);
}
}
} else {
(*handles2[idx2]).first += 1;
heap2.increase(handles2[idx2]);
}
}
}
}
if (!query_heap.empty()) {
query_top = query_heap.top();
}
if (!db_heap.empty()) {
db_top = db_heap.top();
}
}
// Finally, run verification for the current image.
VoteAndVerifyOptions vote_and_verify_options;
image_score.score += VoteAndVerify(vote_and_verify_options, matches);
}
// Re-rank the images using the spatial verification scores.
const size_t num_images = std::min<size_t>(
image_scores->size(), options.num_images_after_verification);
auto SortFunc = [](const ImageScore& score1, const ImageScore& score2) {
return score1.score > score2.score;
};
if (num_images == image_scores->size()) {
std::sort(image_scores->begin(), image_scores->end(), SortFunc);
} else {
std::partial_sort(image_scores->begin(), image_scores->begin() + num_images,
image_scores->end(), SortFunc);
image_scores->resize(num_images);
}
}
template <typename kDescType, int kDescDim, int kEmbeddingDim>
void VisualIndex<kDescType, kDescDim, kEmbeddingDim>::Prepare() {
inverted_index_.Finalize();
prepared_ = true;
}
template <typename kDescType, int kDescDim, int kEmbeddingDim>
void VisualIndex<kDescType, kDescDim, kEmbeddingDim>::Build(
const BuildOptions& options, const DescType& descriptors) {
// Quantize the descriptor space into visual words.
Quantize(options, descriptors);
// Build the search index on the visual words.
flann::AutotunedIndexParams index_params;
index_params["target_precision"] =
static_cast<float>(options.target_precision);
visual_word_index_ =
flann::AutotunedIndex<flann::L2<kDescType>>(index_params);
visual_word_index_.buildIndex(visual_words_);
// Initialize a new inverted index.
inverted_index_ = InvertedIndexType();
inverted_index_.Initialize(NumVisualWords());
// Generate descriptor projection matrix.
inverted_index_.GenerateHammingEmbeddingProjection();
// Learn the Hamming embedding.
const int kNumNeighbors = 1;
const Eigen::MatrixXi word_ids = FindWordIds(
descriptors, kNumNeighbors, options.num_checks, options.num_threads);
inverted_index_.ComputeHammingEmbedding(descriptors, word_ids);
}
template <typename kDescType, int kDescDim, int kEmbeddingDim>
void VisualIndex<kDescType, kDescDim, kEmbeddingDim>::Read(
const std::string& path) {
long int file_offset = 0;
// Read the visual words.
{
if (visual_words_.ptr() != nullptr) {
delete[] visual_words_.ptr();
}
std::ifstream file(path, std::ios::binary);
CHECK(file.is_open()) << path;
const uint64_t rows = ReadBinaryLittleEndian<uint64_t>(&file);
const uint64_t cols = ReadBinaryLittleEndian<uint64_t>(&file);
kDescType* visual_words_data = new kDescType[rows * cols];
for (size_t i = 0; i < rows * cols; ++i) {
visual_words_data[i] = ReadBinaryLittleEndian<kDescType>(&file);
}
visual_words_ = flann::Matrix<kDescType>(visual_words_data, rows, cols);
file_offset = file.tellg();
}
// Read the visual words search index.
visual_word_index_ =
flann::AutotunedIndex<flann::L2<kDescType>>(visual_words_);
{
FILE* fin = fopen(path.c_str(), "rb");
CHECK_NOTNULL(fin);
fseek(fin, file_offset, SEEK_SET);
visual_word_index_.loadIndex(fin);
file_offset = ftell(fin);
fclose(fin);
}
// Read the inverted index.
{
std::ifstream file(path, std::ios::binary);
CHECK(file.is_open()) << path;
file.seekg(file_offset, std::ios::beg);
inverted_index_.Read(&file);
}
image_ids_.clear();
inverted_index_.GetImageIds(&image_ids_);
}
template <typename kDescType, int kDescDim, int kEmbeddingDim>
void VisualIndex<kDescType, kDescDim, kEmbeddingDim>::Write(
const std::string& path) {
// Write the visual words.
{
CHECK_NOTNULL(visual_words_.ptr());
std::ofstream file(path, std::ios::binary);
CHECK(file.is_open()) << path;
WriteBinaryLittleEndian<uint64_t>(&file, visual_words_.rows);
WriteBinaryLittleEndian<uint64_t>(&file, visual_words_.cols);
for (size_t i = 0; i < visual_words_.rows * visual_words_.cols; ++i) {
WriteBinaryLittleEndian<kDescType>(&file, visual_words_.ptr()[i]);
}
}
// Write the visual words search index.
{
FILE* fout = fopen(path.c_str(), "ab");
CHECK_NOTNULL(fout);
visual_word_index_.saveIndex(fout);
fclose(fout);
}
// Write the inverted index.
{
std::ofstream file(path, std::ios::binary | std::ios::app);
CHECK(file.is_open()) << path;
inverted_index_.Write(&file);
}
}
template <typename kDescType, int kDescDim, int kEmbeddingDim>
void VisualIndex<kDescType, kDescDim, kEmbeddingDim>::Quantize(
const BuildOptions& options, const DescType& descriptors) {
static_assert(DescType::IsRowMajor, "Descriptors must be row-major.");
CHECK_GE(options.num_visual_words, options.branching);
CHECK_GE(descriptors.rows(), options.num_visual_words);
const flann::Matrix<kDescType> descriptor_matrix(
const_cast<kDescType*>(descriptors.data()), descriptors.rows(),
descriptors.cols());
std::vector<typename flann::L2<kDescType>::ResultType> centers_data(
options.num_visual_words * descriptors.cols());
flann::Matrix<typename flann::L2<kDescType>::ResultType> centers(
centers_data.data(), options.num_visual_words, descriptors.cols());
flann::KMeansIndexParams index_params;
index_params["branching"] = options.branching;
index_params["iterations"] = options.num_iterations;
index_params["centers_init"] = flann::FLANN_CENTERS_KMEANSPP;
const int num_centers = flann::hierarchicalClustering<flann::L2<kDescType>>(
descriptor_matrix, centers, index_params);
CHECK_LE(num_centers, options.num_visual_words);
const size_t visual_word_data_size = num_centers * descriptors.cols();
kDescType* visual_words_data = new kDescType[visual_word_data_size];
for (size_t i = 0; i < visual_word_data_size; ++i) {
if (std::is_integral<kDescType>::value) {
visual_words_data[i] = std::round(centers_data[i]);
} else {
visual_words_data[i] = centers_data[i];
}
}
if (visual_words_.ptr() != nullptr) {
delete[] visual_words_.ptr();
}
visual_words_ = flann::Matrix<kDescType>(visual_words_data, num_centers,
descriptors.cols());
}
template <typename kDescType, int kDescDim, int kEmbeddingDim>
void VisualIndex<kDescType, kDescDim, kEmbeddingDim>::QueryAndFindWordIds(
const QueryOptions& options, const DescType& descriptors,
std::vector<ImageScore>* image_scores, Eigen::MatrixXi* word_ids) const {
CHECK(prepared_);
if (descriptors.rows() == 0) {
image_scores->clear();
return;
}
*word_ids = FindWordIds(descriptors, options.num_neighbors,
options.num_checks, options.num_threads);
inverted_index_.Query(descriptors, *word_ids, image_scores);
auto SortFunc = [](const ImageScore& score1, const ImageScore& score2) {
return score1.score > score2.score;
};
size_t num_images = image_scores->size();
if (options.max_num_images >= 0) {
num_images = std::min<size_t>(image_scores->size(), options.max_num_images);
}
if (num_images == image_scores->size()) {
std::sort(image_scores->begin(), image_scores->end(), SortFunc);
} else {
std::partial_sort(image_scores->begin(), image_scores->begin() + num_images,
image_scores->end(), SortFunc);
image_scores->resize(num_images);
}
}
template <typename kDescType, int kDescDim, int kEmbeddingDim>
Eigen::MatrixXi VisualIndex<kDescType, kDescDim, kEmbeddingDim>::FindWordIds(
const DescType& descriptors, const int num_neighbors, const int num_checks,
const int num_threads) const {
static_assert(DescType::IsRowMajor, "Descriptors must be row-major");
CHECK_GT(descriptors.rows(), 0);
CHECK_GT(num_neighbors, 0);
Eigen::Matrix<size_t, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>
word_ids(descriptors.rows(), num_neighbors);
word_ids.setConstant(InvertedIndexType::kInvalidWordId);
flann::Matrix<size_t> indices(word_ids.data(), descriptors.rows(),
num_neighbors);
Eigen::Matrix<typename flann::L2<kDescType>::ResultType, Eigen::Dynamic,
Eigen::Dynamic, Eigen::RowMajor>
distance_matrix(descriptors.rows(), num_neighbors);
flann::Matrix<typename flann::L2<kDescType>::ResultType> distances(
distance_matrix.data(), descriptors.rows(), num_neighbors);
const flann::Matrix<kDescType> query(
const_cast<kDescType*>(descriptors.data()), descriptors.rows(),
descriptors.cols());
flann::SearchParams search_params(num_checks);
if (num_threads < 0) {
search_params.cores = std::thread::hardware_concurrency();
} else {
search_params.cores = num_threads;
}
if (search_params.cores <= 0) {
search_params.cores = 1;
}
visual_word_index_.knnSearch(query, indices, distances, num_neighbors,
search_params);
return word_ids.cast<int>();
}
} // namespace retrieval
} // namespace colmap
#endif // COLMAP_SRC_RETRIEVAL_VISUAL_INDEX_H_
|