1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
|
"""
Generate Python versions for each of the colormaps provided in
http://peterkovesi.com/projects/colourmaps/CETperceptual_csv_0_1.zip
Also adds Glasbey colormaps created using: https://github.com/taketwo/glasbey
see https://github.com/pyviz/colorcet/issues/11 for more details
"""
import csv
import re
from pathlib import Path
csv_folders = ['CET', 'Glasbey']
output_file = '../colorcet/__init__.py'
header = '''\
"""
Python versions of the 256-color colormaps provided in
http://peterkovesi.com/projects/colourmaps/CETperceptual_csv_0_1.zip
Each of these colormaps can be accessed as a Bokeh palette or
Matplotlib colormap, either by string name:
palette['name']
cm['name']
or as Python attributes:
palette.name
cm.name
or as individually importable Python attributes:
m_name
b_name
All colormaps are named using Peter Kovesi\'s naming scheme:
<category>_<huesequence>_<lightnessrange>_c<meanchroma>[_s<colorshift>_[r<ifreversed>]]
but some have shorter, more convenient aliases, some of which are
named for the color ranges included and others
based on the qualitative appearance. The colormaps with
shorter names tend to be the most useful subset, and for
cases like automatic population of a GUI widget these
colormaps are provided as a separate subset:
palette_n['name'] or palette_n.name
cm_n['name'] or cm_n.name
Also included are some sets of 256 Glasbey colors. These are available via the
same methods described above and are named:
glasbey_<starting_palette>[_<min|max>c_<chroma_value>][_<min|max>l_<lightness_value>][_hue_<start>_<end>]
Some of the Glasbey sets are aliased to short names as explained in the User Guide.
"""
import os
from collections import OrderedDict
from itertools import chain
# Define '__version__'
from importlib.metadata import version
__version__ = version('colorcet')
class AttrODict(OrderedDict):
"""Ordered dictionary with attribute access (e.g. for tab completion)"""
def __dir__(self): return self.keys()
def __delattr__(self, name): del self[name]
def __getattr__(self, name):
return self[name] if not name.startswith('_') else super(AttrODict, self).__getattr__(name)
def __setattr__(self, name, value):
if (name.startswith('_')): return super(AttrODict, self).__setattr__(name, value)
self[name] = value
try:
from matplotlib.colors import LinearSegmentedColormap, ListedColormap
from matplotlib.cm import register_cmap
except:
def LinearSegmentedColormap(colorlist,name): pass
def ListedColormap(colorlist,name): pass
def register_cmap(name,cmap): pass
LinearSegmentedColormap.from_list=lambda n,c,N: None
def rgb_to_hex(r,g,b):
return '#%02x%02x%02x' % (r,g,b)
def bokeh_palette(name,colorlist):
palette[name] = [rgb_to_hex(int(r*255),int(g*255),int(b*255)) for r,g,b in colorlist]
return palette[name]
def mpl_cm(name,colorlist):
cm[name] = LinearSegmentedColormap.from_list(name, colorlist, N=len(colorlist))
register_cmap("cet_"+name, cmap=cm[name])
return cm[name]
def mpl_cl(name,colorlist):
cm[name] = ListedColormap(colorlist, name)
register_cmap("cet_"+name, cmap=cm[name])
return cm[name]
def get_aliases(name):
"""Get the aliases for a given colormap name"""
names = [name]
def check_aliases(names, d, k_position=-1, v_position=0):
for name in [n for n in names]:
for k, v in d.items():
v = [v] if not isinstance(v, list) else v
for vname in v:
if name == vname and k not in names:
if k_position == -2:
names.append(k)
else:
names.insert(k_position, k)
if name == k and vname not in names:
if v_position == -2:
names.append(vname)
else:
names.insert(v_position, vname)
return names
# Repeatedly look for new aliases until no new aliases are found
n_names = len(names)
while True:
names = check_aliases(names, aliases, k_position=-2, v_position=0)
names = check_aliases(names, cetnames_flipped, k_position=-2, v_position=-1)
if len(names) == n_names:
break
n_names = len(names)
# Sort names as 1or0_underscores, CET, multiple_under_scores (alias, cetname, algorithmicname)
def name_sortfn(name):
if name.count("_") > 1:
return 2
if "CET" in name:
return 1
return 0
return ', '.join(sorted(names, key=name_sortfn))
def all_original_names(group=None, not_group=None, only_aliased=False, only_CET=False):
"""
Returns a list (optionally filtered) of the names of the available colormaps
Filters available:
- group: only include maps whose name include the given string(s)
(e.g. "'linear'" or "['linear','diverging']").
- not_group: filter out any maps whose names include the given string(s)
- only_aliased: only include maps with shorter/simpler aliases
- only_CET: only include maps from CET
"""
names = palette.keys()
if group:
groups = group if isinstance(group, list) else [group]
names = [n for ns in [list(filter(lambda x: g in x, names)) for g in groups] for n in ns]
if not_group:
not_groups = not_group if isinstance(not_group, list) else [not_group]
for g in not_groups:
names = list(filter(lambda x: g not in x, names))
if only_aliased:
names = filter(lambda x: x in aliases.keys(), names)
else:
names = filter(lambda x: x not in chain.from_iterable(aliases.values()), names)
if only_CET:
names = filter(lambda x: x in cetnames_flipped.values(), names)
else:
names = filter(lambda x: x not in cetnames_flipped.values(), names)
return sorted(list(names))
palette = AttrODict()
cm = AttrODict()
palette_n = AttrODict()
cm_n = AttrODict()
'''
footer = """
palette_n = AttrODict(sorted(palette_n.items()))
cm_n = AttrODict(sorted(cm_n.items()))
"""
# Here #mpl indicates a colormap name taken from Matplotlib
aliases = dict(
circle_mgbm_67_c31 = ['cyclic_isoluminant'],
cyclic_mygbm_30_95_c78_s25 = ['colorwheel'],
diverging_bkr_55_10_c35 = ['bkr'],
diverging_bky_60_10_c30 = ['bky'],
diverging_bwr_40_95_c42 = ['coolwarm'], #mpl
diverging_gwv_55_95_c39 = ['gwv'],
diverging_linear_bjy_30_90_c45 = ['bjy'],
diverging_protanopic_deuteranopic_bwy_60_95_c32 = ['bwy'],
diverging_tritanopic_cwr_75_98_c20 = ['cwr'],
glasbey_bw_minc_20 = ['glasbey'],
glasbey_bw_minc_20_hue_150_280 = ['glasbey_cool'],
glasbey_bw_minc_20_hue_330_100 = ['glasbey_warm'],
glasbey_bw_minc_20_maxl_70 = ['glasbey_dark'],
glasbey_bw_minc_20_minl_30 = ['glasbey_light'],
isoluminant_cgo_80_c38 = ['isolum'],
linear_bgy_10_95_c74 = ['bgy'],
linear_bgyw_15_100_c68 = ['bgyw'],
linear_blue_95_50_c20 = ['blues'], #mpl
linear_bmw_5_95_c89 = ['bmw'],
linear_bmy_10_95_c78 = ['bmy'],
linear_grey_0_100_c0 = ['gray'], #mpl
linear_grey_10_95_c0 = ['dimgray'],
linear_kbc_5_95_c73 = ['kbc', 'linear_blue_5_95_c73'],
linear_kbgoy_20_95_c57 = ['gouldian'],
linear_kbgyw_10_98_c63 = ['kbgyw'],
linear_kgy_5_95_c69 = ['kgy', 'linear_green_5_95_c69'],
linear_kryw_0_100_c71 = ['fire'],
linear_ternary_blue_0_44_c57 = ['kb'],
linear_ternary_green_0_46_c42 = ['kg'],
linear_ternary_red_0_50_c52 = ['kr'],
rainbow_bgyr_10_90_c83 = ['rainbow4'],
rainbow_bgyr_35_85_c73 = ['rainbow'],
)
cetnames = {
'CET-C1': 'cyclic_mrybm_35-75_c68',
'CET-C1s': 'cyclic_mrybm_35-75_c68_s25',
'CET-C2': 'cyclic_mygbm_30-95_c78',
'CET-C2s': 'cyclic_mygbm_30-95_c78_s25',
'CET-C3': 'cyclic_wrkbw_10_90_c43',
'CET-C3s': 'cyclic_wrkbw_10_90_c43_s25',
'CET-C4': 'cyclic_wrwbw_40-90_c42',
'CET-C4s': 'cyclic_wrwbw_40-90_c42_s25',
'CET-C5': 'cyclic_grey_15-85_c0',
'CET-C5s': 'cyclic_grey_15-85_c0_s25',
'CET-C6': 'cyclic_rygcbmr_50_90_c64',
'CET-C6s': 'cyclic_rygcbmr_50_90_c64_s25',
'CET-C7': 'cyclic_ymcgy_60_90_c67',
'CET-C7s': 'cyclic_ymcgy_60_90_c67_s25',
'CET-C8': 'cyclic_mygbm_50_90_c46',
'CET-C8s': 'cyclic_mygbm_50_90_c46_s25',
'CET-C9': 'cyclic_mybm_20_100_c48',
'CET-C9s': 'cyclic_mybm_20_100_c48_s25',
'CET-C10': 'circle_mgbm_67_c31',
'CET-C10s': 'circle_mgbm_67_c31_s25',
'CET-C11': 'cyclic_bgrmb_35_70_c75',
'CET-C11s': 'cyclic_bgrmb_35_70_c75_s25',
'CET-CBC1': 'cyclic-protanopic-deuteranopic_bwyk_16-96_c31',
'CET-CBC2': 'cyclic-protanopic-deuteranopic_wywb_55-96_c33',
'CET-CBD1': 'diverging-protanopic-deuteranopic_bwy_60-95_c32',
'CET-CBD2': 'diverging_linear_protanopic_deuteranopic_bjy_57_89_c34',
'CET-CBL1': 'linear-protanopic-deuteranopic_kbjyw_5-95_c25',
'CET-CBL2': 'linear-protanopic-deuteranopic_kbw_5-98_c40',
'CET-CBL3': 'linear_protanopic_deuteranopic_kbw_5_95_c34',
'CET-CBL4': 'linear_protanopic_deuteranopic_kyw_5_95_c49',
'CET-CBTC1': 'cyclic-tritanopic_cwrk_40-100_c20',
'CET-CBTC2': 'cyclic-tritanopic_wrwc_70-100_c20',
'CET-CBTD1': 'diverging-tritanopic_cwr_75-98_c20',
'CET-CBTL1': 'linear-tritanopic_krjcw_5-98_c46',
'CET-CBTL2': 'linear-tritanopic_krjcw_5-95_c24',
'CET-CBTL3': 'linear_tritanopic_kcw_5_95_c22',
'CET-CBTL4': 'linear_tritanopic_krw_5_95_c46',
'CET-D1': 'diverging_bwr_40-95_c42',
'CET-D1A': 'diverging_bwr_20-95_c54',
'CET-D2': 'diverging_gwv_55-95_c39',
'CET-D3': 'diverging_gwr_55-95_c38',
'CET-D4': 'diverging_bkr_55-10_c35',
'CET-D6': 'diverging_bky_60-10_c30',
'CET-D7': 'diverging-linear_bjy_30-90_c45',
'CET-D8': 'diverging-linear_bjr_30-55_c53',
'CET-D9': 'diverging_bwr_55-98_c37',
'CET-D10': 'diverging_cwm_80-100_c22',
'CET-D11': 'diverging-isoluminant_cjo_70_c25',
'CET-D12': 'diverging-isoluminant_cjm_75_c23',
'CET-D13': 'diverging_bwg_20-95_c41',
'CET-I1': 'isoluminant_cgo_70_c39',
'CET-I2': 'isoluminant_cgo_80_c38',
'CET-I3': 'isoluminant_cm_70_c39',
'CET-L1': 'linear_grey_0-100_c0',
'CET-L2': 'linear_grey_10-95_c0',
'CET-L3': 'linear_kryw_0-100_c71',
'CET-L4': 'linear_kry_0-97_c73',
'CET-L5': 'linear_kgy_5-95_c69',
'CET-L6': 'linear_kbc_5-95_c73',
'CET-L7': 'linear_bmw_5-95_c86',
'CET-L8': 'linear_bmy_10-95_c71',
'CET-L9': 'linear_bgyw_20-98_c66',
'CET-L10': 'linear_gow_60-85_c27',
'CET-L11': 'linear_gow_65-90_c35',
'CET-L12': 'linear_blue_95-50_c20',
'CET-L13': 'linear_ternary-red_0-50_c52',
'CET-L14': 'linear_ternary-green_0-46_c42',
'CET-L15': 'linear_ternary-blue_0-44_c57',
'CET-L16': 'linear_kbgyw_5-98_c62',
'CET-L17': 'linear_worb_100-25_c53',
'CET-L18': 'linear_wyor_100-45_c55',
'CET-L19': 'linear_wcmr_100-45_c42',
'CET-L20': 'linear_kbgoy_20_95_c57',
'CET-R1': 'rainbow_bgyrm_35-85_c69',
'CET-R2': 'rainbow_bgyr_35-85_c72',
'CET-R3': 'diverging-rainbow_bgymr_45-85_c67',
'CET-R4': 'rainbow_bgyr_10_90_c83',
}
cetnames_flipped = {v.replace('-', '_'): k.replace('-', '_') for
k, v in cetnames.items()}
def create_alias(alias, base, output, cmtype='mpl_cm', is_name=True):
output.write("{0} = b_{1}\n".format(alias,base))
output.write("m_{0} = m_{1}\n".format(alias,base))
output.write("m_{0}_r = m_{1}_r\n".format(alias,base))
output.write("palette['{0}'] = b_{1}\n".format(alias,base))
if is_name:
output.write("palette_n['{0}'] = b_{1}\n".format(alias,base))
output.write("cm['{0}'] = m_{1}\n".format(alias,base))
output.write("cm['{0}_r'] = m_{1}_r\n".format(alias,base))
if is_name:
output.write("cm_n['{0}'] = {2}('{0}',{1})\n".format(alias,base,cmtype))
output.write("cm_n['{0}_r'] = {2}('{0}_r',list(reversed({1})))\n".format(alias,base,cmtype))
else:
output.write("register_cmap('cet_{0}',m_{1})\n".format(alias,base))
output.write("register_cmap('cet_{0}_r',m_{1}_r)\n".format(alias,base))
def get_csvs_in_order(output_file, csv_folders):
"""Get the CSV files to write to the __init__.py, keeping the order found in __init__.py"""
# get order of existing maps in __init__.py
init_cmap_order = []
with open(output_file) as f:
while line := f.readline():
if match := re.match(r"(\w+) = \[ # cmap_def", line):
init_cmap_order.append(match.groups()[0])
new_order_i = len(init_cmap_order) # index of next new map after those in int_map_order
# get all csvs
csv_paths = []
for fld in csv_folders:
csv_paths += list(Path(fld).glob("*.csv"))
csv_order = [-1]*len(csv_paths)
# Get a new ordering of the csvs from init_cmap_order
for path_i, csv_path in enumerate(csv_paths):
base = csv_path.stem.replace("-","_").replace("_n256","")
try:
csv_order[path_i] = init_cmap_order.index(base)
except ValueError:
# new csv not in the original order, so put it at the end
csv_order[path_i] = new_order_i
new_order_i += 1
# Put the csv paths in the new order
csv_paths_new = [Path()]*len(csv_paths)
for path_i, order_i in enumerate(csv_order):
csv_paths_new[order_i] = csv_paths[path_i]
return csv_paths_new
def format_dict(name, d, tabs=0):
t4 = " "*4
tabs = t4*tabs
s = tabs + "{} = {{\n".format(name)
for k, v in d.items():
v = "'{}'".format(v) if isinstance(v, str) else v
s += tabs + t4 + "'{}': {},\n".format(k, v)
s += tabs + "}\n"
return s
def gen_init_py(output_file, csv_folders):
csv_paths = get_csvs_in_order(output_file, csv_folders)
cmaps = []
with open(output_file, "w") as output:
output.write(header)
output.write(format_dict("aliases", aliases))
output.write(format_dict("cetnames_flipped", cetnames_flipped))
for csv_path in csv_paths:
categorical = ('Glasbey' in [str(p) for p in csv_path.parents])
cmtype = "mpl_cl" if categorical else 'mpl_cm'
if csv_path.suffix == ".csv":
base = csv_path.stem.replace("-","_").replace("_n256","")
if base in cmaps:
continue
output.write("\n\n")
output.write("{0} = [ # cmap_def\n".format(base))
with open(csv_path, 'r') as csvfile:
reader = csv.reader(csvfile)
for row in reader:
output.write("[{0}],\n".format(", ".join(row)))
output.write("]\n")
output.write("b_{0} = bokeh_palette('{0}',{0})\n".format(base))
output.write("m_{0} = {1}('{0}',{0})\n".format(base, cmtype))
output.write("m_{0}_r = {1}('{0}_r',list(reversed({0})))\n".format(base, cmtype))
if base in aliases:
for alias in aliases[base]:
create_alias(alias, base, output, cmtype, is_name=True)
if base in cetnames_flipped:
alias = cetnames_flipped[base]
create_alias(alias, base, output, cmtype, is_name=False)
output.write("\n\n")
cmaps.append(base)
output.write(footer)
if __name__ == "__main__":
gen_init_py(output_file, csv_folders)
|