File: CET_to_py.py

package info (click to toggle)
colorcet 3.1.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,060 kB
  • sloc: python: 27,630; makefile: 5
file content (411 lines) | stat: -rw-r--r-- 16,281 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
"""
Generate Python versions for each of the colormaps provided in
http://peterkovesi.com/projects/colourmaps/CETperceptual_csv_0_1.zip

Also adds Glasbey colormaps created using: https://github.com/taketwo/glasbey
see https://github.com/pyviz/colorcet/issues/11 for more details
"""

import csv
import re
from pathlib import Path

csv_folders = ['CET', 'Glasbey']
output_file = '../colorcet/__init__.py'
header = '''\
"""
Python versions of the 256-color colormaps provided in
http://peterkovesi.com/projects/colourmaps/CETperceptual_csv_0_1.zip

Each of these colormaps can be accessed as a Bokeh palette or
Matplotlib colormap, either by string name:

  palette['name']
  cm['name']

or as Python attributes:

  palette.name
  cm.name

or as individually importable Python attributes:

  m_name
  b_name

All colormaps are named using Peter Kovesi\'s naming scheme:

<category>_<huesequence>_<lightnessrange>_c<meanchroma>[_s<colorshift>_[r<ifreversed>]]

but some have shorter, more convenient aliases, some of which are
named for the color ranges included and others
based on the qualitative appearance.  The colormaps with
shorter names tend to be the most useful subset, and for
cases like automatic population of a GUI widget these
colormaps are provided as a separate subset:

  palette_n['name'] or palette_n.name
  cm_n['name'] or cm_n.name

Also included are some sets of 256 Glasbey colors. These are available via the
same methods described above and are named:

  glasbey_<starting_palette>[_<min|max>c_<chroma_value>][_<min|max>l_<lightness_value>][_hue_<start>_<end>]

Some of the Glasbey sets are aliased to short names as explained in the User Guide.
"""

import os

from collections import OrderedDict
from itertools import chain

# Define '__version__'
from importlib.metadata import version
__version__ = version('colorcet')


class AttrODict(OrderedDict):
    """Ordered dictionary with attribute access (e.g. for tab completion)"""
    def __dir__(self): return self.keys()
    def __delattr__(self, name): del self[name]
    def __getattr__(self, name):
        return self[name] if not name.startswith('_') else super(AttrODict, self).__getattr__(name)
    def __setattr__(self, name, value):
        if (name.startswith('_')): return super(AttrODict, self).__setattr__(name, value)
        self[name] = value


try:
    from matplotlib.colors import LinearSegmentedColormap, ListedColormap
    from matplotlib.cm import register_cmap
except:
    def LinearSegmentedColormap(colorlist,name): pass
    def ListedColormap(colorlist,name): pass
    def register_cmap(name,cmap): pass
    LinearSegmentedColormap.from_list=lambda n,c,N: None


def rgb_to_hex(r,g,b):
    return '#%02x%02x%02x' % (r,g,b)


def bokeh_palette(name,colorlist):
    palette[name] = [rgb_to_hex(int(r*255),int(g*255),int(b*255)) for r,g,b in colorlist]
    return palette[name]


def mpl_cm(name,colorlist):
    cm[name]      = LinearSegmentedColormap.from_list(name, colorlist, N=len(colorlist))
    register_cmap("cet_"+name, cmap=cm[name])
    return cm[name]


def mpl_cl(name,colorlist):
    cm[name]      = ListedColormap(colorlist, name)
    register_cmap("cet_"+name, cmap=cm[name])
    return cm[name]


def get_aliases(name):
    """Get the aliases for a given colormap name"""
    names = [name]

    def check_aliases(names, d,  k_position=-1, v_position=0):
        for name in [n for n in names]:
            for k, v in d.items():
                v = [v] if not isinstance(v, list) else v
                for vname in v:
                    if name == vname and k not in names:
                        if k_position == -2:
                            names.append(k)
                        else:
                            names.insert(k_position, k)
                    if name == k and vname not in names:
                        if v_position == -2:
                            names.append(vname)
                        else:
                            names.insert(v_position, vname)
        return names

    # Repeatedly look for new aliases until no new aliases are found
    n_names = len(names)
    while True:
        names = check_aliases(names, aliases, k_position=-2, v_position=0)
        names = check_aliases(names, cetnames_flipped, k_position=-2, v_position=-1)
        if len(names) == n_names:
            break
        n_names = len(names)

    # Sort names as 1or0_underscores, CET, multiple_under_scores (alias, cetname, algorithmicname)
    def name_sortfn(name):
        if name.count("_") > 1:
            return 2
        if "CET" in name:
            return 1
        return 0

    return ',  '.join(sorted(names, key=name_sortfn))


def all_original_names(group=None, not_group=None, only_aliased=False, only_CET=False):
    """
    Returns a list (optionally filtered) of the names of the available colormaps
    Filters available:
    - group: only include maps whose name include the given string(s)
      (e.g. "'linear'" or "['linear','diverging']").
    - not_group: filter out any maps whose names include the given string(s)
    - only_aliased: only include maps with shorter/simpler aliases
    - only_CET: only include maps from CET
    """
    names = palette.keys()
    if group:
        groups = group if isinstance(group, list) else [group]
        names = [n for ns in [list(filter(lambda x: g in x, names)) for g in groups] for n in ns]
    if not_group:
        not_groups = not_group if isinstance(not_group, list) else [not_group]
        for g in not_groups:
            names = list(filter(lambda x: g not in x, names))
    if only_aliased:
        names = filter(lambda x: x in aliases.keys(), names)
    else:
        names = filter(lambda x: x not in chain.from_iterable(aliases.values()), names)
    if only_CET:
        names = filter(lambda x: x in cetnames_flipped.values(), names)
    else:
        names = filter(lambda x: x not in cetnames_flipped.values(), names)
    return sorted(list(names))


palette = AttrODict()
cm = AttrODict()
palette_n = AttrODict()
cm_n = AttrODict()

'''

footer = """
palette_n = AttrODict(sorted(palette_n.items()))
cm_n = AttrODict(sorted(cm_n.items()))
"""

# Here #mpl indicates a colormap name taken from Matplotlib
aliases = dict(
    circle_mgbm_67_c31                              = ['cyclic_isoluminant'],
    cyclic_mygbm_30_95_c78_s25                      = ['colorwheel'],
    diverging_bkr_55_10_c35                         = ['bkr'],
    diverging_bky_60_10_c30                         = ['bky'],
    diverging_bwr_40_95_c42                         = ['coolwarm'],  #mpl
    diverging_gwv_55_95_c39                         = ['gwv'],
    diverging_linear_bjy_30_90_c45                  = ['bjy'],
    diverging_protanopic_deuteranopic_bwy_60_95_c32 = ['bwy'],
    diverging_tritanopic_cwr_75_98_c20              = ['cwr'],
    glasbey_bw_minc_20                              = ['glasbey'],
    glasbey_bw_minc_20_hue_150_280                  = ['glasbey_cool'],
    glasbey_bw_minc_20_hue_330_100                  = ['glasbey_warm'],
    glasbey_bw_minc_20_maxl_70                      = ['glasbey_dark'],
    glasbey_bw_minc_20_minl_30                      = ['glasbey_light'],
    isoluminant_cgo_80_c38                          = ['isolum'],
    linear_bgy_10_95_c74                            = ['bgy'],
    linear_bgyw_15_100_c68                          = ['bgyw'],
    linear_blue_95_50_c20                           = ['blues'],  #mpl
    linear_bmw_5_95_c89                             = ['bmw'],
    linear_bmy_10_95_c78                            = ['bmy'],
    linear_grey_0_100_c0                            = ['gray'],  #mpl
    linear_grey_10_95_c0                            = ['dimgray'],
    linear_kbc_5_95_c73                             = ['kbc', 'linear_blue_5_95_c73'],
    linear_kbgoy_20_95_c57                          = ['gouldian'],
    linear_kbgyw_10_98_c63                          = ['kbgyw'],
    linear_kgy_5_95_c69                             = ['kgy', 'linear_green_5_95_c69'],
    linear_kryw_0_100_c71                           = ['fire'],
    linear_ternary_blue_0_44_c57                    = ['kb'],
    linear_ternary_green_0_46_c42                   = ['kg'],
    linear_ternary_red_0_50_c52                     = ['kr'],
    rainbow_bgyr_10_90_c83                          = ['rainbow4'],
    rainbow_bgyr_35_85_c73                          = ['rainbow'],
)

cetnames = {
    'CET-C1': 'cyclic_mrybm_35-75_c68',
    'CET-C1s': 'cyclic_mrybm_35-75_c68_s25',
    'CET-C2': 'cyclic_mygbm_30-95_c78',
    'CET-C2s': 'cyclic_mygbm_30-95_c78_s25',
    'CET-C3': 'cyclic_wrkbw_10_90_c43',
    'CET-C3s': 'cyclic_wrkbw_10_90_c43_s25',
    'CET-C4': 'cyclic_wrwbw_40-90_c42',
    'CET-C4s': 'cyclic_wrwbw_40-90_c42_s25',
    'CET-C5': 'cyclic_grey_15-85_c0',
    'CET-C5s': 'cyclic_grey_15-85_c0_s25',
    'CET-C6': 'cyclic_rygcbmr_50_90_c64',
    'CET-C6s': 'cyclic_rygcbmr_50_90_c64_s25',
    'CET-C7': 'cyclic_ymcgy_60_90_c67',
    'CET-C7s': 'cyclic_ymcgy_60_90_c67_s25',
    'CET-C8': 'cyclic_mygbm_50_90_c46',
    'CET-C8s': 'cyclic_mygbm_50_90_c46_s25',
    'CET-C9': 'cyclic_mybm_20_100_c48',
    'CET-C9s': 'cyclic_mybm_20_100_c48_s25',
    'CET-C10': 'circle_mgbm_67_c31',
    'CET-C10s': 'circle_mgbm_67_c31_s25',
    'CET-C11': 'cyclic_bgrmb_35_70_c75',
    'CET-C11s': 'cyclic_bgrmb_35_70_c75_s25',
    'CET-CBC1': 'cyclic-protanopic-deuteranopic_bwyk_16-96_c31',
    'CET-CBC2': 'cyclic-protanopic-deuteranopic_wywb_55-96_c33',
    'CET-CBD1': 'diverging-protanopic-deuteranopic_bwy_60-95_c32',
    'CET-CBD2': 'diverging_linear_protanopic_deuteranopic_bjy_57_89_c34',
    'CET-CBL1': 'linear-protanopic-deuteranopic_kbjyw_5-95_c25',
    'CET-CBL2': 'linear-protanopic-deuteranopic_kbw_5-98_c40',
    'CET-CBL3': 'linear_protanopic_deuteranopic_kbw_5_95_c34',
    'CET-CBL4': 'linear_protanopic_deuteranopic_kyw_5_95_c49',
    'CET-CBTC1': 'cyclic-tritanopic_cwrk_40-100_c20',
    'CET-CBTC2': 'cyclic-tritanopic_wrwc_70-100_c20',
    'CET-CBTD1': 'diverging-tritanopic_cwr_75-98_c20',
    'CET-CBTL1': 'linear-tritanopic_krjcw_5-98_c46',
    'CET-CBTL2': 'linear-tritanopic_krjcw_5-95_c24',
    'CET-CBTL3': 'linear_tritanopic_kcw_5_95_c22',
    'CET-CBTL4': 'linear_tritanopic_krw_5_95_c46',
    'CET-D1': 'diverging_bwr_40-95_c42',
    'CET-D1A': 'diverging_bwr_20-95_c54',
    'CET-D2': 'diverging_gwv_55-95_c39',
    'CET-D3': 'diverging_gwr_55-95_c38',
    'CET-D4': 'diverging_bkr_55-10_c35',
    'CET-D6': 'diverging_bky_60-10_c30',
    'CET-D7': 'diverging-linear_bjy_30-90_c45',
    'CET-D8': 'diverging-linear_bjr_30-55_c53',
    'CET-D9': 'diverging_bwr_55-98_c37',
    'CET-D10': 'diverging_cwm_80-100_c22',
    'CET-D11': 'diverging-isoluminant_cjo_70_c25',
    'CET-D12': 'diverging-isoluminant_cjm_75_c23',
    'CET-D13': 'diverging_bwg_20-95_c41',
    'CET-I1': 'isoluminant_cgo_70_c39',
    'CET-I2': 'isoluminant_cgo_80_c38',
    'CET-I3': 'isoluminant_cm_70_c39',
    'CET-L1': 'linear_grey_0-100_c0',
    'CET-L2': 'linear_grey_10-95_c0',
    'CET-L3': 'linear_kryw_0-100_c71',
    'CET-L4': 'linear_kry_0-97_c73',
    'CET-L5': 'linear_kgy_5-95_c69',
    'CET-L6': 'linear_kbc_5-95_c73',
    'CET-L7': 'linear_bmw_5-95_c86',
    'CET-L8': 'linear_bmy_10-95_c71',
    'CET-L9': 'linear_bgyw_20-98_c66',
    'CET-L10': 'linear_gow_60-85_c27',
    'CET-L11': 'linear_gow_65-90_c35',
    'CET-L12': 'linear_blue_95-50_c20',
    'CET-L13': 'linear_ternary-red_0-50_c52',
    'CET-L14': 'linear_ternary-green_0-46_c42',
    'CET-L15': 'linear_ternary-blue_0-44_c57',
    'CET-L16': 'linear_kbgyw_5-98_c62',
    'CET-L17': 'linear_worb_100-25_c53',
    'CET-L18': 'linear_wyor_100-45_c55',
    'CET-L19': 'linear_wcmr_100-45_c42',
    'CET-L20': 'linear_kbgoy_20_95_c57',
    'CET-R1': 'rainbow_bgyrm_35-85_c69',
    'CET-R2': 'rainbow_bgyr_35-85_c72',
    'CET-R3': 'diverging-rainbow_bgymr_45-85_c67',
    'CET-R4': 'rainbow_bgyr_10_90_c83',
}

cetnames_flipped = {v.replace('-', '_'): k.replace('-', '_') for
                     k, v in cetnames.items()}

def create_alias(alias, base, output, cmtype='mpl_cm', is_name=True):
    output.write("{0} = b_{1}\n".format(alias,base))
    output.write("m_{0} = m_{1}\n".format(alias,base))
    output.write("m_{0}_r = m_{1}_r\n".format(alias,base))
    output.write("palette['{0}'] = b_{1}\n".format(alias,base))
    if is_name:
        output.write("palette_n['{0}'] = b_{1}\n".format(alias,base))
    output.write("cm['{0}'] = m_{1}\n".format(alias,base))
    output.write("cm['{0}_r'] = m_{1}_r\n".format(alias,base))
    if is_name:
        output.write("cm_n['{0}'] = {2}('{0}',{1})\n".format(alias,base,cmtype))
        output.write("cm_n['{0}_r'] = {2}('{0}_r',list(reversed({1})))\n".format(alias,base,cmtype))
    else:
        output.write("register_cmap('cet_{0}',m_{1})\n".format(alias,base))
        output.write("register_cmap('cet_{0}_r',m_{1}_r)\n".format(alias,base))


def get_csvs_in_order(output_file, csv_folders):
    """Get the CSV files to write to the __init__.py, keeping the order found in __init__.py"""

    # get order of existing maps in __init__.py
    init_cmap_order = []
    with open(output_file) as f:
        while line := f.readline():
            if match := re.match(r"(\w+) = \[  # cmap_def", line):
                init_cmap_order.append(match.groups()[0])
    new_order_i = len(init_cmap_order)  # index of next new map after those in int_map_order

    # get all csvs
    csv_paths = []
    for fld in csv_folders:
        csv_paths += list(Path(fld).glob("*.csv"))
    csv_order = [-1]*len(csv_paths)

    # Get a new ordering of the csvs from init_cmap_order
    for path_i, csv_path in enumerate(csv_paths):
        base = csv_path.stem.replace("-","_").replace("_n256","")
        try:
            csv_order[path_i] = init_cmap_order.index(base)
        except ValueError:
            # new csv not in the original order, so put it at the end
            csv_order[path_i] = new_order_i
            new_order_i += 1

    # Put the csv paths in the new order
    csv_paths_new = [Path()]*len(csv_paths)
    for path_i, order_i in enumerate(csv_order):
        csv_paths_new[order_i] = csv_paths[path_i]

    return csv_paths_new


def format_dict(name, d, tabs=0):
    t4 = " "*4
    tabs = t4*tabs
    s = tabs + "{} = {{\n".format(name)
    for k, v in d.items():
        v = "'{}'".format(v) if isinstance(v, str) else v
        s += tabs + t4 + "'{}': {},\n".format(k, v)
    s += tabs + "}\n"
    return s


def gen_init_py(output_file, csv_folders):
    csv_paths = get_csvs_in_order(output_file, csv_folders)

    cmaps = []
    with open(output_file, "w") as output:
        output.write(header)
        output.write(format_dict("aliases", aliases))
        output.write(format_dict("cetnames_flipped", cetnames_flipped))
        for csv_path in csv_paths:
            categorical = ('Glasbey' in [str(p) for p in csv_path.parents])
            cmtype = "mpl_cl" if categorical else 'mpl_cm'
            if csv_path.suffix == ".csv":
                base = csv_path.stem.replace("-","_").replace("_n256","")
                if base in cmaps:
                    continue
                output.write("\n\n")
                output.write("{0} = [  # cmap_def\n".format(base))
                with open(csv_path, 'r') as csvfile:
                    reader = csv.reader(csvfile)
                    for row in reader:
                        output.write("[{0}],\n".format(", ".join(row)))
                output.write("]\n")
                output.write("b_{0} = bokeh_palette('{0}',{0})\n".format(base))
                output.write("m_{0} = {1}('{0}',{0})\n".format(base, cmtype))
                output.write("m_{0}_r = {1}('{0}_r',list(reversed({0})))\n".format(base, cmtype))
                if base in aliases:
                    for alias in aliases[base]:
                        create_alias(alias, base, output, cmtype, is_name=True)
                if base in cetnames_flipped:
                    alias = cetnames_flipped[base]
                    create_alias(alias, base, output, cmtype, is_name=False)
                output.write("\n\n")
                cmaps.append(base)
        output.write(footer)


if __name__ == "__main__":
    gen_init_py(output_file, csv_folders)