1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
#include "math.h"
#include "stdlib.h"
#include "stdio.h"
#include "adolc.h"
#include "sparse/sparsedrivers.h"
#define repnum 10
//------------------------------------------------------------------------------------
// for time measurements
#include <sys/time.h>
#include "ColPackHeaders.h"
using namespace ColPack;
double k_getTime() {
struct timeval v;
struct timezone z;
gettimeofday(&v, &z);
return ((double)v.tv_sec)+((double)v.tv_usec)/1000000;
}
//------------------------------------------------------------------------------------
// required for second method
using namespace std;
#include <list>
#include <map>
#include <string>
#include <vector>
//------------------------------------------------------------------------------------
// as before
#define tag_f 1
#define tag_red 2
#define tag_HP 3
#define tag_c 4
// problem definition -> eval_fun.c
void init_dim(int *n, int *m);
void init_startpoint(double *x, int n);
double feval(double *x, int n);
adouble feval_ad(double *x, int n);
void ceval(double *x, double *c, int n);
void ceval_ad(double *x, adouble *c, int n);
adouble feval_ad_mod(double *x, int n);
adouble feval_ad_modHP(double *x, int n);
void printmat(char* kette, int n, int m, double** M);
void printmatint(char* kette, int n, int m, int** M);
void printmatint_c(char* kette, int m,unsigned int** M);
int main()
{
int i, j, k, l, sum, n, m, nnz, direct = 1, found;
double f;
double *x, *c;
adouble fad, *xad, *cad;
//double** Zpp;
//double** Zppf;
double** J;
//double* s;
//int p_H_dir, p_H_indir;
size_t tape_stats[11];
int num;
FILE *fp_JP;
double **Seed_J;
double **Jc;
int p_J;
int recover = 1;
int jac_vec = 1;
int compute_full = 1;
int output_sparsity_pattern_J = 0;
//int output_sparsity_pattern_H = 1;
//int use_direct_method = 1;
//int output_direct = 0;
//int use_indirect_method = 1;
//int output_indirect = 0;
double t_f_1, t_f_2, div_f=0, div_c=0, div_JP=0, div_JP2=0, div_Seed=0, div_Seed_C=0, div_Jc=0, div_Jc_C=0, div_rec=0, div_rec_C=0, div_J=0;
//double test;
unsigned int *rind;
unsigned int *cind;
double *values;
//tring s_InputFile = "test_mat.mtx";
//string s_InputFile = "jac_pat.mtx";
//------------------------------------------------------------------------------------
// problem definition + evaluation
init_dim(&n,&m); // initialize n and m
printf(" n = %d m = %d\n",n,m);
x = (double*) malloc(n*sizeof(double)); // x: vector input for function evaluation
c = (double*) malloc(m*sizeof(double)); // c: constraint vector
cad = new adouble[m];
init_startpoint(x,n);
t_f_1 = k_getTime();
for(i=0;i<repnum;i++)
f = feval(x,n);
t_f_2 = k_getTime();
div_f = (t_f_2 - t_f_1)*1.0/repnum;
printf("XXX The time needed for function evaluation: %10.6f \n \n", div_f);
t_f_1 = k_getTime();
for(i=0;i<repnum;i++)
ceval(x,c,n);
t_f_2 = k_getTime();
div_c = (t_f_2 - t_f_1)*1.0/repnum;
printf("XXX The time needed for constraint evaluation: %10.6f \n \n", div_c);
trace_on(tag_f);
fad = feval_ad(x, n); // feval_ad: derivative of feval
fad >>= f;
trace_off();
trace_on(tag_c);
ceval_ad(x, cad, n); //ceval_ad: derivative of ceval
for(i=0;i<m;i++)
cad[i] >>= f;
trace_off();
//return 1;
tapestats(tag_c,tape_stats); // reading of tape statistics
printf("\n independents %ld\n",(long)tape_stats[0]);
printf(" dependents %ld\n",(long)tape_stats[1]);
printf(" operations %ld\n",(long)tape_stats[5]);
printf(" buffer size %ld\n",(long)tape_stats[4]);
printf(" maxlive %ld\n",(long)tape_stats[2]);
printf(" valstack size %ld\n\n",(long)tape_stats[3]);
//------------------------------------------------------------------------------------
// full Jacobian:
div_J = -1;
if(compute_full == 1)
{
J = myalloc2(m,n);
t_f_1 = k_getTime();
jacobian(tag_c,m,n,x,J);
t_f_2 = k_getTime();
div_J = (t_f_2 - t_f_1);
printf("XXX The time needed for full Jacobian: %10.6f \n \n", div_J);
printf("XXX runtime ratio: %10.6f \n \n", div_J/div_c);
//save the matrix into a file (non-zero entries only)
fp_JP = fopen("jac_full.mtx","w");
fprintf(fp_JP,"%d %d\n",m,n);
for (i=0;i<m;i++)
{
for (j=0;j<n;j++)
if(J[i][j]!=0.0) fprintf(fp_JP,"%d %d %10.6f\n",i,j,J[i][j] );
}
fclose(fp_JP);
}
//------------------------------------------------------------------------------------
printf("XXX THE 4 STEP TO COMPUTE SPARSE MATRICES USING ColPack \n \n");
// STEP 1: Determination of sparsity pattern of Jacobian JP:
unsigned int *rb=NULL; /* dependent variables */
unsigned int *cb=NULL; /* independent variables */
unsigned int **JP=NULL; /* compressed block row storage */
int ctrl[2];
JP = (unsigned int **) malloc(m*sizeof(unsigned int*));
ctrl[0] = 0; ctrl[1] = 0;
t_f_1 = k_getTime();
jac_pat(tag_c, m, n, x, JP, ctrl); //ADOL-C calculate the sparsity pattern
t_f_2 = k_getTime();
div_JP = (t_f_2 - t_f_1);
printf("XXX STEP 1: The time needed for Jacobian pattern: %10.6f \n \n", div_JP);
printf("XXX STEP 1: runtime ratio: %10.6f \n \n", div_JP/div_c);
nnz = 0;
for (i=0;i<m;i++)
nnz += JP[i][0];
printf(" nnz %d \n",nnz);
printf(" hier 1a\n");
//------------------------------------------------------------------------------------
// STEP 2: Determination of Seed matrix:
double tg_C;
int dummy;
t_f_1 = k_getTime();
BipartiteGraphPartialColoringInterface * gGraph = new BipartiteGraphPartialColoringInterface(SRC_MEM_ADOLC, JP, m, n);
//gGraph->PrintBipartiteGraph();
t_f_2 = k_getTime();
printf("XXX STEP 2: The time needed for Graph construction: %10.6f \n \n", (t_f_2-t_f_1) );
printf("XXX STEP 2: runtime ratio: %10.6f \n \n", (t_f_2-t_f_1)/div_c);
t_f_1 = k_getTime();
//gGraph->GenerateSeedJacobian(&Seed_J, &dummy, &p_J,
// "NATURAL", "COLUMN_PARTIAL_DISTANCE_TWO");
gGraph->PartialDistanceTwoColoring("NATURAL", "COLUMN_PARTIAL_DISTANCE_TWO");
t_f_2 = k_getTime();
printf("XXX STEP 2: The time needed for Coloring: %10.6f \n \n", (t_f_2-t_f_1));
printf("XXX STEP 2: runtime ratio: %10.6f \n \n", (t_f_2-t_f_1)/div_c);
t_f_1 = k_getTime();
Seed_J = gGraph->GetSeedMatrix(&dummy, &p_J);
t_f_2 = k_getTime();
tg_C = t_f_2 - t_f_1;
printf("XXX STEP 2: The time needed for Seed generation: %10.6f \n \n", tg_C);
printf("XXX STEP 2: runtime ratio: %10.6f \n \n", tg_C/div_c);
//*/
//------------------------------------------------------------------------------------
// STEP 3: Jacobian-matrix product:
// ADOL-C:
//*
if (jac_vec == 1)
{
Jc = myalloc2(m,p_J);
t_f_1 = k_getTime();
printf(" hier 1\n");
fov_forward(tag_c,m,n,p_J,x,Seed_J,c,Jc);
printf(" hier 2\n");
t_f_2 = k_getTime();
div_Jc = (t_f_2 - t_f_1);
printf("XXX STEP 3: The time needed for Jacobian-matrix product: %10.6f \n \n", div_Jc);
printf("XXX STEP 3: runtime ratio: %10.6f \n \n", div_Jc/div_c);
}
//------------------------------------------------------------------------------------
// STEP 4: computed Jacobians/ recovery
if (recover == 1)
{
JacobianRecovery1D jr1d;
printf("m = %d, n = %d, p_J = %d \n",m,n,p_J);
//printmatint_c("JP Jacobian Pattern",m,JP);
//printmat("Jc Jacobian compressed",m,p_J,Jc);
t_f_1 = k_getTime();
jr1d.RecoverD2Cln_CoordinateFormat (gGraph, Jc, JP, &rind, &cind, &values);
t_f_2 = k_getTime();
div_rec_C = (t_f_2 - t_f_1);
printf("XXX STEP 4: The time needed for Recovery: %10.6f \n \n", div_rec_C);
printf("XXX STEP 4: runtime ratio: %10.6f \n \n", div_rec_C/div_c);
//save recovered matrix into file
fp_JP = fopen("jac_recovered.mtx","w");
fprintf(fp_JP,"%d %d %d\n",m,n,nnz);
for (i=0;i<nnz;i++)
{
fprintf(fp_JP,"%d %d %10.6f\n",rind[i],cind[i],values[i] );
}
fclose(fp_JP);
}
/*By this time, if you compare the 2 output files: jac_full.mtx and jac_recovered.mtx
You should be able to see that the non-zero entries are identical
*/
free(JP);
delete[] cad;
free(c);
free(x);
delete gGraph;
if(jac_vec == 1) {
myfree2(Jc);
}
if(compute_full == 1)
{
myfree2(J);
}
return 0;
}
/***************************************************************************/
void printmat(char* kette, int n, int m, double** M)
{ int i,j;
printf("%s \n",kette);
for(i=0; i<n ;i++)
{
printf("\n %d: ",i);
for(j=0;j<m ;j++)
printf(" %10.4f ", M[i][j]);
}
printf("\n");
}
void printmatint(char* kette, int n, int m, int** M)
{ int i,j;
printf("%s \n",kette);
for(i=0; i<n ;i++)
{
printf("\n %d: ",i);
for(j=0;j<m ;j++)
printf(" %d ", M[i][j]);
}
printf("\n");
}
void printmatint_c(char* kette, int m,unsigned int** M)
{ int i;
unsigned int j;
printf("%s \n",kette);
for (i=0;i<m;i++)
{
printf("\n %d (%d): ",i,M[i][0]);
for (j=1;j<=M[i][0];j++)
printf("\t%d ",M[i][j]);
}
printf("\n");
}
|