1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
/************************************************************************************
Copyright (C) 2005-2008 Assefaw H. Gebremedhin, Arijit Tarafdar, Duc Nguyen,
Alex Pothen
This file is part of ColPack.
ColPack is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
ColPack is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with ColPack. If not, see <http://www.gnu.org/licenses/>.
************************************************************************************/
#include "ColPackHeaders.h"
using namespace std;
namespace ColPack
{
int JacobianRecovery2D::DirectRecover_RowCompressedFormat_usermem(BipartiteGraphBicoloringInterface* g, double** dp2_RowCompressedMatrix, double** dp2_ColumnCompressedMatrix, unsigned int ** uip2_JacobianSparsityPattern, double*** dp3_JacobianValue) {
if(g==NULL) {
cerr<<"g==NULL"<<endl;
return _FALSE;
}
int rowCount = g->GetRowVertexCount();
vector<int> vi_LeftVertexColors;
g->GetLeftVertexColors(vi_LeftVertexColors);
vector<int> RightVertexColors_Transformed;
g->GetRightVertexColors_Transformed(RightVertexColors_Transformed);
int i_ColumnColorCount = g->GetRightVertexColorCount();
if (g->GetRightVertexDefaultColor() == 1) i_ColumnColorCount--; //color ID 0 is used, ignore it
//Do (column-)color statistic for each row, i.e., see how many elements in that row has color 0, color 1 ...
int** colorStatistic = new int*[rowCount]; //color statistic for each row. For example, colorStatistic[0] is color statistic for row 0
//If row 0 has 5 columns with color 3 => colorStatistic[0][3] = 5;
//Allocate memory for colorStatistic[rowCount][colorCount] and initilize the matrix
for(unsigned int i=0; i < (unsigned int)rowCount; i++) {
colorStatistic[i] = new int[i_ColumnColorCount];
for(unsigned int j=0; j < (unsigned int)i_ColumnColorCount; j++) colorStatistic[i][j] = 0;
}
//populate colorStatistic for right (column) vertices
for(unsigned int i=0; i < (unsigned int)rowCount; i++) {
int numOfNonZeros = uip2_JacobianSparsityPattern[i][0];
for(unsigned int j=1; j <= (unsigned int)numOfNonZeros; j++) {
//non-zero in the Jacobian: [i][uip2_JacobianSparsityPattern[i][j]]
//color of that column: RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]]-1
if (RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]] > 0) {
colorStatistic[i][RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]]-1]++;
}
}
}
//Recover value of the Jacobian from dp2_ColumnCompressedMatrix (priority) and dp2_RowCompressedMatrix
//cout<<"Recover value of the Jacobian from dp2_ColumnCompressedMatrix (priority) and dp2_RowCompressedMatrix"<<endl;
for(unsigned int i=0; i < (unsigned int)rowCount; i++) {
unsigned int numOfNonZeros = uip2_JacobianSparsityPattern[i][0];
for(unsigned int j=1; j <= numOfNonZeros; j++) {
//printf("Recover uip2_JacobianSparsityPattern[%d][%d] = %d \n", i, j, uip2_JacobianSparsityPattern[i][j]);
// Check and see if we can recover the value from dp2_ColumnCompressedMatrix first
if (RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]] > 0 &&
colorStatistic[i][RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]] - 1]==1
) {
//printf("\t from COLUMN [%d][%d] = %7.2f \n",i, RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]]-1, dp2_ColumnCompressedMatrix[i][RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]]-1]);
//printf("\t from COLUMN [%d][%d] \n",i, RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]]-1);
(*dp3_JacobianValue)[i][j] = dp2_ColumnCompressedMatrix[i][RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]]-1];
}
else { // If not, then use dp2_RowCompressedMatrix
//printf("\t from ROW [%d][%d] = %7.2f \n",m_vi_LeftVertexColors[i]-1, uip2_JacobianSparsityPattern[i][j], dp2_RowCompressedMatrix[m_vi_LeftVertexColors[i]-1][uip2_JacobianSparsityPattern[i][j]]);
//printf("\t from ROW [%d][%d] \n",m_vi_LeftVertexColors[i]-1, uip2_JacobianSparsityPattern[i][j]);
(*dp3_JacobianValue)[i][j] = dp2_RowCompressedMatrix[vi_LeftVertexColors[i]-1][uip2_JacobianSparsityPattern[i][j]];
}
}
}
//cout<<"DONE"<<endl;
free_2DMatrix(colorStatistic, rowCount);
colorStatistic = NULL;
return rowCount;
}
int JacobianRecovery2D::DirectRecover_RowCompressedFormat_unmanaged(BipartiteGraphBicoloringInterface* g, double** dp2_RowCompressedMatrix, double** dp2_ColumnCompressedMatrix, unsigned int ** uip2_JacobianSparsityPattern, double*** dp3_JacobianValue) {
if(g==NULL) {
cerr<<"g==NULL"<<endl;
return _FALSE;
}
int rowCount = g->GetRowVertexCount();
//allocate memory for *dp3_JacobianValue. The dp3_JacobianValue and uip2_JacobianSparsityPattern matrices should have the same size
//cout<<"allocate memory for *dp3_JacobianValue"<<endl;
*dp3_JacobianValue = (double**) malloc(rowCount * sizeof(double*));
for(int i=0; i < rowCount; i++) {
int numOfNonZeros = uip2_JacobianSparsityPattern[i][0];
(*dp3_JacobianValue)[i] = (double*) malloc( (numOfNonZeros+1) * sizeof(double) );
(*dp3_JacobianValue)[i][0] = numOfNonZeros; //initialize value of the 1st entry
for(int j=1; j <= numOfNonZeros; j++) (*dp3_JacobianValue)[i][j] = 0.; //initialize value of other entries
}
return DirectRecover_RowCompressedFormat_usermem(g, dp2_RowCompressedMatrix, dp2_ColumnCompressedMatrix, uip2_JacobianSparsityPattern, dp3_JacobianValue);
}
int JacobianRecovery2D::DirectRecover_RowCompressedFormat(BipartiteGraphBicoloringInterface* g, double** dp2_RowCompressedMatrix, double** dp2_ColumnCompressedMatrix, unsigned int ** uip2_JacobianSparsityPattern, double*** dp3_JacobianValue) {
int returnValue = DirectRecover_RowCompressedFormat_unmanaged(g, dp2_RowCompressedMatrix, dp2_ColumnCompressedMatrix, uip2_JacobianSparsityPattern, dp3_JacobianValue);
if(AF_available) {
//cout<<"AF_available="<<AF_available<<endl; Pause();
reset();
}
AF_available = true;
i_AF_rowCount = g->GetRowVertexCount();
dp2_AF_Value = *dp3_JacobianValue;
return returnValue;
}
//*/
int JacobianRecovery2D::DirectRecover_SparseSolversFormat_usermem(BipartiteGraphBicoloringInterface* g, double** dp2_RowCompressedMatrix, double** dp2_ColumnCompressedMatrix, unsigned int ** uip2_JacobianSparsityPattern, unsigned int** ip2_RowIndex, unsigned int** ip2_ColumnIndex, double** dp2_JacobianValue) {
if(g==NULL) {
cerr<<"g==NULL"<<endl;
return _FALSE;
}
int rowCount = g->GetRowVertexCount();
//Making the array indices to start at 0 instead of 1
for(unsigned int i=0; i <= (unsigned int) rowCount ; i++) {
(*ip2_RowIndex)[i]--;
}
for(unsigned int i=0; i < (unsigned int)g->GetEdgeCount(); i++) {
(*ip2_ColumnIndex)[i]--;
}
vector<int> vi_LeftVertexColors;
g->GetLeftVertexColors(vi_LeftVertexColors);
vector<int> RightVertexColors_Transformed;
g->GetRightVertexColors_Transformed(RightVertexColors_Transformed);
int i_ColumnColorCount = g->GetRightVertexColorCount();
if (g->GetRightVertexDefaultColor() == 1) i_ColumnColorCount--; //color ID 0 is used, ignore it
//Do (column-)color statistic for each row, i.e., see how many elements in that row has color 0, color 1 ...
int** colorStatistic = new int*[rowCount]; //color statistic for each row. For example, colorStatistic[0] is color statistic for row 0
//If row 0 has 5 columns with color 3 => colorStatistic[0][3] = 5;
//Allocate memory for colorStatistic[rowCount][colorCount] and initilize the matrix
for(unsigned int i=0; i < (unsigned int)rowCount; i++) {
colorStatistic[i] = new int[i_ColumnColorCount];
for(unsigned int j=0; j < (unsigned int)i_ColumnColorCount; j++) colorStatistic[i][j] = 0;
}
//populate colorStatistic for right (column) vertices
unsigned int numOfNonZeros = 0;
for(unsigned int i=0; i < (unsigned int)rowCount; i++) {
numOfNonZeros = (unsigned int)uip2_JacobianSparsityPattern[i][0];
for(unsigned int j=1; j <= numOfNonZeros; j++) {
//non-zero in the Jacobian: [i][uip2_JacobianSparsityPattern[i][j]]
//color of that column: RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]]-1
if (RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]] > 0) {
colorStatistic[i][RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]]-1]++;
}
}
}
//Recover value of the Jacobian from dp2_ColumnCompressedMatrix (priority) and dp2_RowCompressedMatrix
//cout<<"Recover value of the Jacobian from dp2_ColumnCompressedMatrix (priority) and dp2_RowCompressedMatrix"<<endl;
unsigned int numOfNonZerosInEachRow = 0;
for(unsigned int i=0; i < (unsigned int)rowCount; i++) {
numOfNonZerosInEachRow = uip2_JacobianSparsityPattern[i][0];
for(unsigned int j=1; j <= numOfNonZerosInEachRow; j++) {
//printf("Recover uip2_JacobianSparsityPattern[%d][%d] = %d \n", i, j, uip2_JacobianSparsityPattern[i][j]);
// Check and see if we can recover the value from dp2_ColumnCompressedMatrix first
if (RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]] > 0 &&
colorStatistic[i][RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]] - 1]==1
) {
//printf("\t from COLUMN [%d][%d] = %7.2f \n",i, RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]]-1, dp2_ColumnCompressedMatrix[i][RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]]-1]);
//printf("\t from COLUMN [%d][%d] \n",i, RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]]-1);
(*dp2_JacobianValue)[(*ip2_RowIndex)[i]+j-1] = dp2_ColumnCompressedMatrix[i][RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]]-1];
}
else { // If not, then use dp2_RowCompressedMatrix
//printf("\t from ROW [%d][%d] = %7.2f \n",m_vi_LeftVertexColors[i]-1, uip2_JacobianSparsityPattern[i][j], dp2_RowCompressedMatrix[m_vi_LeftVertexColors[i]-1][uip2_JacobianSparsityPattern[i][j]]);
//printf("\t from ROW [%d][%d] \n",m_vi_LeftVertexColors[i]-1, uip2_JacobianSparsityPattern[i][j]);
(*dp2_JacobianValue)[(*ip2_RowIndex)[i]+j-1] = dp2_RowCompressedMatrix[vi_LeftVertexColors[i]-1][uip2_JacobianSparsityPattern[i][j]];
}
}
}
//cout<<"DONE"<<endl;
//Making the array indices to start at 1 instead of 0 to conform with theIntel MKL sparse storage scheme for the direct sparse solvers
for(unsigned int i=0; i <= (unsigned int) rowCount ; i++) {
(*ip2_RowIndex)[i]++;
}
for(unsigned int i=0; i < (unsigned int)g->GetEdgeCount(); i++) {
(*ip2_ColumnIndex)[i]++;
}
free_2DMatrix(colorStatistic, rowCount);
colorStatistic = NULL;
return rowCount;
}
int JacobianRecovery2D::DirectRecover_SparseSolversFormat_unmanaged(BipartiteGraphBicoloringInterface* g, double** dp2_RowCompressedMatrix, double** dp2_ColumnCompressedMatrix, unsigned int ** uip2_JacobianSparsityPattern, unsigned int** ip2_RowIndex, unsigned int** ip2_ColumnIndex, double** dp2_JacobianValue) {
if(g==NULL) {
cerr<<"g==NULL"<<endl;
return _FALSE;
}
int rowCount = g->GetRowVertexCount();
// Allocate memory and populate ip2_RowIndex and ip2_ColumnIndex
g->GetRowVertices(ip2_RowIndex);
unsigned int numOfNonZeros = g->GetColumnIndices(ip2_ColumnIndex);
//Making the array indices to start at 1 instead of 0 to conform with theIntel MKL sparse storage scheme for the direct sparse solvers
for(unsigned int i=0; i <= (unsigned int) rowCount ; i++) {
(*ip2_RowIndex)[i]++;
}
for(unsigned int i=0; i < numOfNonZeros; i++) {
(*ip2_ColumnIndex)[i]++;
}
//cout<<"allocate memory for *dp2_JacobianValue rowCount="<<rowCount<<endl;
//printf("i=%d\tnumOfNonZeros=%d \n", i, numOfNonZeros);
(*dp2_JacobianValue) = (double*) malloc(numOfNonZeros * sizeof(double)); //allocate memory for *dp2_JacobianValue.
for(unsigned int i=0; i < numOfNonZeros; i++) (*dp2_JacobianValue)[i] = 0.; //initialize value of other entries
return DirectRecover_SparseSolversFormat_usermem(g, dp2_RowCompressedMatrix, dp2_ColumnCompressedMatrix, uip2_JacobianSparsityPattern, ip2_RowIndex, ip2_ColumnIndex, dp2_JacobianValue);
}
int JacobianRecovery2D::DirectRecover_SparseSolversFormat(BipartiteGraphBicoloringInterface* g, double** dp2_RowCompressedMatrix, double** dp2_ColumnCompressedMatrix, unsigned int ** uip2_JacobianSparsityPattern, unsigned int** ip2_RowIndex, unsigned int** ip2_ColumnIndex, double** dp2_JacobianValue) {
int returnValue = DirectRecover_SparseSolversFormat_unmanaged(g, dp2_RowCompressedMatrix, dp2_ColumnCompressedMatrix, uip2_JacobianSparsityPattern, ip2_RowIndex, ip2_ColumnIndex, dp2_JacobianValue);
if(SSF_available) {
//cout<<"SSF_available="<<SSF_available<<endl; Pause();
reset();
}
SSF_available = true;
i_SSF_rowCount = g->GetRowVertexCount();
ip_SSF_RowIndex = *ip2_RowIndex;
ip_SSF_ColumnIndex = *ip2_ColumnIndex;
dp_SSF_Value = *dp2_JacobianValue;
return returnValue;
}
//*/
int JacobianRecovery2D::DirectRecover_CoordinateFormat_usermem(BipartiteGraphBicoloringInterface* g, double** dp2_RowCompressedMatrix, double** dp2_ColumnCompressedMatrix, unsigned int ** uip2_JacobianSparsityPattern, unsigned int** ip2_RowIndex, unsigned int** ip2_ColumnIndex, double** dp2_JacobianValue) {
if(g==NULL) {
cerr<<"g==NULL"<<endl;
return _FALSE;
}
int rowCount = g->GetRowVertexCount();
vector<int> vi_LeftVertexColors;
g->GetLeftVertexColors(vi_LeftVertexColors);
vector<int> RightVertexColors_Transformed;
g->GetRightVertexColors_Transformed(RightVertexColors_Transformed);
int i_ColumnColorCount = g->GetRightVertexColorCount();
if (g->GetRightVertexDefaultColor() == 1) i_ColumnColorCount--; //color ID 0 is used, ignore it
//Do (column-)color statistic for each row, i.e., see how many elements in that row has color 0, color 1 ...
int** colorStatistic = new int*[rowCount]; //color statistic for each row. For example, colorStatistic[0] is color statistic for row 0
//If row 0 has 5 columns with color 3 => colorStatistic[0][3] = 5;
//Allocate memory for colorStatistic[rowCount][colorCount] and initilize the matrix
for(unsigned int i=0; i < (unsigned int)rowCount; i++) {
colorStatistic[i] = new int[i_ColumnColorCount];
for(unsigned int j=0; j < (unsigned int)i_ColumnColorCount; j++) colorStatistic[i][j] = 0;
}
//populate colorStatistic for right (column) vertices
for(unsigned int i=0; i < (unsigned int)rowCount; i++) {
int numOfNonZeros = uip2_JacobianSparsityPattern[i][0];
for(unsigned int j=1; j <= (unsigned int)numOfNonZeros; j++) {
//non-zero in the Jacobian: [i][uip2_JacobianSparsityPattern[i][j]]
//color of that column: m_vi_RightVertexColors[uip2_JacobianSparsityPattern[i][j]]-1
if (RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]] > 0) {
colorStatistic[i][RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]]-1]++;
}
}
}
//Recover value of the Jacobian from dp2_ColumnCompressedMatrix (priority) and dp2_RowCompressedMatrix
//cout<<"Recover value of the Jacobian from dp2_ColumnCompressedMatrix (priority) and dp2_RowCompressedMatrix"<<endl;
unsigned int numOfNonZeros_count = 0;
for(unsigned int i=0; i < (unsigned int)rowCount; i++) {
unsigned int numOfNonZeros = uip2_JacobianSparsityPattern[i][0];
for(unsigned int j=1; j <= numOfNonZeros; j++) {
//printf("Recover uip2_JacobianSparsityPattern[%d][%d] = %d \n", i, j, uip2_JacobianSparsityPattern[i][j]);
// Check and see if we can recover the value from dp2_ColumnCompressedMatrix first
if (RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]] > 0 &&
colorStatistic[i][RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]] - 1]==1
) {
//printf("\t from COLUMN [%d][%d] = %7.2f \n",i, RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]]-1, dp2_ColumnCompressedMatrix[i][RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]]-1]);
//printf("\t from COLUMN [%d][%d] \n",i, RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]]-1);
(*dp2_JacobianValue)[numOfNonZeros_count] = dp2_ColumnCompressedMatrix[i][RightVertexColors_Transformed[uip2_JacobianSparsityPattern[i][j]]-1];
}
else { // If not, then use dp2_RowCompressedMatrix
//printf("\t from ROW [%d][%d] = %7.2f \n",m_vi_LeftVertexColors[i]-1, uip2_JacobianSparsityPattern[i][j], dp2_RowCompressedMatrix[m_vi_LeftVertexColors[i]-1][uip2_JacobianSparsityPattern[i][j]]);
//printf("\t from ROW [%d][%d] \n",m_vi_LeftVertexColors[i]-1, uip2_JacobianSparsityPattern[i][j]);
(*dp2_JacobianValue)[numOfNonZeros_count] = dp2_RowCompressedMatrix[vi_LeftVertexColors[i]-1][uip2_JacobianSparsityPattern[i][j]];
}
(*ip2_RowIndex)[numOfNonZeros_count] = i;
(*ip2_ColumnIndex)[numOfNonZeros_count] = uip2_JacobianSparsityPattern[i][j];
numOfNonZeros_count++;
}
}
//cout<<"DONE"<<endl;
free_2DMatrix(colorStatistic, rowCount);
colorStatistic = NULL;
return numOfNonZeros_count;
}
int JacobianRecovery2D::DirectRecover_CoordinateFormat_unmanaged(BipartiteGraphBicoloringInterface* g, double** dp2_RowCompressedMatrix, double** dp2_ColumnCompressedMatrix, unsigned int ** uip2_JacobianSparsityPattern, unsigned int** ip2_RowIndex, unsigned int** ip2_ColumnIndex, double** dp2_JacobianValue) {
if(g==NULL) {
cerr<<"g==NULL"<<endl;
return _FALSE;
}
unsigned int numOfNonZeros = g->GetEdgeCount();
(*ip2_RowIndex) = (unsigned int*) malloc(numOfNonZeros * sizeof(unsigned int));
(*ip2_ColumnIndex) = (unsigned int*) malloc(numOfNonZeros * sizeof(unsigned int));
(*dp2_JacobianValue) = (double*) malloc(numOfNonZeros * sizeof(double)); //allocate memory for *dp2_JacobianValue.
return DirectRecover_CoordinateFormat_usermem(g, dp2_RowCompressedMatrix, dp2_ColumnCompressedMatrix, uip2_JacobianSparsityPattern, ip2_RowIndex, ip2_ColumnIndex, dp2_JacobianValue);
}
int JacobianRecovery2D::DirectRecover_CoordinateFormat(BipartiteGraphBicoloringInterface* g, double** dp2_RowCompressedMatrix, double** dp2_ColumnCompressedMatrix, unsigned int ** uip2_JacobianSparsityPattern, unsigned int** ip2_RowIndex, unsigned int** ip2_ColumnIndex, double** dp2_JacobianValue) {
int returnValue = DirectRecover_CoordinateFormat_unmanaged(g, dp2_RowCompressedMatrix, dp2_ColumnCompressedMatrix, uip2_JacobianSparsityPattern, ip2_RowIndex, ip2_ColumnIndex, dp2_JacobianValue);
if(CF_available) reset();
CF_available = true;
i_CF_rowCount = g->GetRowVertexCount();
ip_CF_RowIndex = *ip2_RowIndex;
ip_CF_ColumnIndex = *ip2_ColumnIndex;
dp_CF_Value = *dp2_JacobianValue;
return returnValue;
}
}
|