1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
/****************************************************************/
/* Parallel Combinatorial BLAS Library (for Graph Computations) */
/* version 1.6 -------------------------------------------------*/
/* date: 6/15/2017 ---------------------------------------------*/
/* authors: Ariful Azad, Aydin Buluc --------------------------*/
/****************************************************************/
/*
Copyright (c) 2010-2017, The Regents of the University of California
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
/**
* Deterministic vertex scrambling functions from V2.1 of the reference implementation
**/
#ifndef _REF_GEN_2_1_H_
#define _REF_GEN_2_1_H_
#ifdef _STDINT_H
#undef _STDINT_H
#endif
#ifdef _GCC_STDINT_H // for cray
#undef _GCC_STDINT_H // original stdint does #include_next<"/opt/gcc/4.5.2/snos/lib/gcc/x86_64-suse-linux/4.5.2/include/stdint-gcc.h">
#endif
#ifndef __STDC_CONSTANT_MACROS
#define __STDC_CONSTANT_MACROS
#endif
#ifndef __STDC_LIMIT_MACROS
#define __STDC_LIMIT_MACROS
#endif
#include <stdint.h>
#include <inttypes.h>
#include <errno.h>
#include <vector>
#include <limits>
#include "SpDefs.h"
#include "StackEntry.h"
#include "promote.h"
#include "Isect.h"
#include "HeapEntry.h"
#include "SpImpl.h"
#include "graph500/generator/graph_generator.h"
#include "graph500/generator/utils.h"
namespace combblas {
/* Initiator settings: for faster random number generation, the initiator
* probabilities are defined as fractions (a = INITIATOR_A_NUMERATOR /
* INITIATOR_DENOMINATOR, b = c = INITIATOR_BC_NUMERATOR /
* INITIATOR_DENOMINATOR, d = 1 - a - b - c. */
#define INITIATOR_A_NUMERATOR 5700
#define INITIATOR_BC_NUMERATOR 1900
#define INITIATOR_DENOMINATOR 10000
/* If this macro is defined to a non-zero value, use SPK_NOISE_LEVEL /
* INITIATOR_DENOMINATOR as the noise parameter to use in introducing noise
* into the graph parameters. The approach used is from "A Hitchhiker's Guide
* to Choosing Parameters of Stochastic Kronecker Graphs" by C. Seshadhri, Ali
* Pinar, and Tamara G. Kolda (http://arxiv.org/abs/1102.5046v1), except that
* the adjustment here is chosen based on the current level being processed
* rather than being chosen randomly. */
#define SPK_NOISE_LEVEL 0
/* #define SPK_NOISE_LEVEL 1000 -- in INITIATOR_DENOMINATOR units */
class RefGen21
{
public:
/* Spread the two 64-bit numbers into five nonzero values in the correct range (2 parameter version) */
static void make_mrg_seed_short(uint64_t userseed, uint_fast32_t* seed)
{
seed[0] = (userseed & 0x3FFFFFFF) + 1;
seed[1] = ((userseed >> 30) & 0x3FFFFFFF) + 1;
seed[2] = (userseed & 0x3FFFFFFF) + 1;
seed[3] = ((userseed >> 30) & 0x3FFFFFFF) + 1;
seed[4] = ((userseed >> 60) << 4) + (userseed >> 60) + 1;
}
static int generate_4way_bernoulli(mrg_state* st, int level, int nlevels)
{
/* Generator a pseudorandom number in the range [0, INITIATOR_DENOMINATOR) without modulo bias. */
static const uint32_t limit = (UINT32_C(0xFFFFFFFF) % INITIATOR_DENOMINATOR);
uint32_t val = mrg_get_uint_orig(st);
if (/* Unlikely */ val < limit) {
do
{
val = mrg_get_uint_orig(st);
}
while (val < limit);
}
#if SPK_NOISE_LEVEL == 0
int spk_noise_factor = 0;
#else
int spk_noise_factor = 2 * SPK_NOISE_LEVEL * level / nlevels - SPK_NOISE_LEVEL;
#endif
int adjusted_bc_numerator = INITIATOR_BC_NUMERATOR + spk_noise_factor;
val %= INITIATOR_DENOMINATOR;
if ((signed)val < adjusted_bc_numerator) return 1;
val -= adjusted_bc_numerator;
if ((signed)val < adjusted_bc_numerator) return 2;
val -= adjusted_bc_numerator;
#if SPK_NOISE_LEVEL == 0
if (val < INITIATOR_A_NUMERATOR) return 0;
#else
if (val < INITIATOR_A_NUMERATOR * (INITIATOR_DENOMINATOR - 2 * INITIATOR_BC_NUMERATOR) / (INITIATOR_DENOMINATOR - 2 * adjusted_bc_numerator)) return 0;
#endif
return 3;
}
/* Reverse bits in a number; this should be optimized for performance
* (including using bit- or byte-reverse intrinsics if your platform has them).
* */
static inline uint64_t bitreverse(uint64_t x)
{
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)
#define USE_GCC_BYTESWAP /* __builtin_bswap* are in 4.3 but not 4.2 */
#endif
#ifdef FAST_64BIT_ARITHMETIC
/* 64-bit code */
#ifdef USE_GCC_BYTESWAP
x = __builtin_bswap64(x);
#else
x = (x >> 32) | (x << 32);
x = ((x >> 16) & UINT64_C(0x0000FFFF0000FFFF)) | ((x & UINT64_C(0x0000FFFF0000FFFF)) << 16);
x = ((x >> 8) & UINT64_C(0x00FF00FF00FF00FF)) | ((x & UINT64_C(0x00FF00FF00FF00FF)) << 8);
#endif
x = ((x >> 4) & UINT64_C(0x0F0F0F0F0F0F0F0F)) | ((x & UINT64_C(0x0F0F0F0F0F0F0F0F)) << 4);
x = ((x >> 2) & UINT64_C(0x3333333333333333)) | ((x & UINT64_C(0x3333333333333333)) << 2);
x = ((x >> 1) & UINT64_C(0x5555555555555555)) | ((x & UINT64_C(0x5555555555555555)) << 1);
return x;
#else
/* 32-bit code */
uint32_t h = (uint32_t)(x >> 32);
uint32_t l = (uint32_t)(x & UINT32_MAX);
#ifdef USE_GCC_BYTESWAP
h = __builtin_bswap32(h);
l = __builtin_bswap32(l);
#else
h = (h >> 16) | (h << 16);
l = (l >> 16) | (l << 16);
h = ((h >> 8) & UINT32_C(0x00FF00FF)) | ((h & UINT32_C(0x00FF00FF)) << 8);
l = ((l >> 8) & UINT32_C(0x00FF00FF)) | ((l & UINT32_C(0x00FF00FF)) << 8);
#endif
h = ((h >> 4) & UINT32_C(0x0F0F0F0F)) | ((h & UINT32_C(0x0F0F0F0F)) << 4);
l = ((l >> 4) & UINT32_C(0x0F0F0F0F)) | ((l & UINT32_C(0x0F0F0F0F)) << 4);
h = ((h >> 2) & UINT32_C(0x33333333)) | ((h & UINT32_C(0x33333333)) << 2);
l = ((l >> 2) & UINT32_C(0x33333333)) | ((l & UINT32_C(0x33333333)) << 2);
h = ((h >> 1) & UINT32_C(0x55555555)) | ((h & UINT32_C(0x55555555)) << 1);
l = ((l >> 1) & UINT32_C(0x55555555)) | ((l & UINT32_C(0x55555555)) << 1);
return ((uint64_t)l << 32) | h; /* Swap halves */
#endif
}
/* Apply a permutation to scramble vertex numbers; a randomly generated
* permutation is not used because applying it at scale is too expensive. */
static inline int64_t scramble(int64_t v0, int lgN, uint64_t val0, uint64_t val1)
{
uint64_t v = (uint64_t)v0;
v += val0 + val1;
v *= (val0 | UINT64_C(0x4519840211493211));
v = (RefGen21::bitreverse(v) >> (64 - lgN));
assert ((v >> lgN) == 0);
v *= (val1 | UINT64_C(0x3050852102C843A5));
v = (RefGen21::bitreverse(v) >> (64 - lgN));
assert ((v >> lgN) == 0);
return (int64_t)v;
}
/* Make a single graph edge using a pre-set MRG state. */
static void make_one_edge(int64_t nverts, int level, int lgN, mrg_state* st, packed_edge* result, uint64_t val0, uint64_t val1)
{
int64_t base_src = 0, base_tgt = 0;
while (nverts > 1)
{
int square = generate_4way_bernoulli(st, level, lgN);
int src_offset = square / 2;
int tgt_offset = square % 2;
assert (base_src <= base_tgt);
if (base_src == base_tgt)
{
/* Clip-and-flip for undirected graph */
if (src_offset > tgt_offset) {
int temp = src_offset;
src_offset = tgt_offset;
tgt_offset = temp;
}
}
nverts /= 2;
++level;
base_src += nverts * src_offset;
base_tgt += nverts * tgt_offset;
}
write_edge(result,
scramble(base_src, lgN, val0, val1),
scramble(base_tgt, lgN, val0, val1));
}
static inline mrg_state MakeScrambleValues(uint64_t & val0, uint64_t & val1, const uint_fast32_t seed[])
{
mrg_state state;
mrg_seed(&state, seed);
mrg_state new_state = state;
mrg_skip(&new_state, 50, 7, 0);
val0 = mrg_get_uint_orig(&new_state);
val0 *= UINT64_C(0xFFFFFFFF);
val0 += mrg_get_uint_orig(&new_state);
val1 = mrg_get_uint_orig(&new_state);
val1 *= UINT64_C(0xFFFFFFFF);
val1 += mrg_get_uint_orig(&new_state);
return state;
}
/* Generate a range of edges (from start_edge to end_edge of the total graph),
* writing into elements [0, end_edge - start_edge) of the edges array. This
* code is parallel on OpenMP, it must be used with separately-implemented SPMD parallelism for MPI.
*/
static void generate_kronecker_range( const uint_fast32_t seed[5] /* All values in [0, 2^31 - 1), not all zero */,
int logN /* In base 2 */, int64_t start_edge, int64_t end_edge, packed_edge* edges)
{
int64_t nverts = (int64_t)1 << logN;
uint64_t val0, val1; /* Values for scrambling */
mrg_state state = MakeScrambleValues(val0, val1, seed);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int64_t ei = start_edge; ei < end_edge; ++ei)
{
mrg_state new_state = state;
mrg_skip(&new_state, 0, ei, 0);
make_one_edge(nverts, 0, logN, &new_state, edges + (ei - start_edge), val0, val1);
}
}
static inline void compute_edge_range(int rank, int size, int64_t M, int64_t* start_idx, int64_t* end_idx)
{
int64_t rankc = (int64_t)(rank);
int64_t sizec = (int64_t)(size);
*start_idx = rankc * (M / sizec) + (rankc < (M % sizec) ? rankc : (M % sizec));
*end_idx = (rankc + 1) * (M / sizec) + (rankc + 1 < (M % sizec) ? rankc + 1 : (M % sizec));
}
static inline void make_graph(int log_numverts, int64_t M, int64_t* nedges_ptr, packed_edge** result_ptr, MPI_Comm & world)
{
int rank, size;
#ifdef DETERMINISTIC
uint64_t userseed1 = 0;
#else
uint64_t userseed1 = (uint64_t) init_random();
#endif
/* Spread the two 64-bit numbers into five nonzero values in the correct range. */
uint_fast32_t seed[5];
make_mrg_seed(userseed1, userseed1, seed);
MPI_Comm_rank(world, &rank);
MPI_Comm_size(world, &size);
int64_t start_idx, end_idx;
compute_edge_range(rank, size, M, &start_idx, &end_idx);
int64_t nedges = end_idx - start_idx;
packed_edge* local_edges = new packed_edge[nedges];
double start = MPI_Wtime();
generate_kronecker_range(seed, log_numverts, start_idx, end_idx, local_edges);
double gen_time = MPI_Wtime() - start;
*result_ptr = local_edges;
*nedges_ptr = nedges;
if (rank == 0)
{
fprintf(stdout, "graph_generation: %f s\n", gen_time);
}
}
static inline long init_random ()
{
long seed = -1;
if (getenv ("SEED"))
{
errno = 0;
seed = strtol (getenv ("SEED"), NULL, 10);
if (errno) seed = -1;
}
if (seed < 0) seed = 0xDECAFBAD;
return seed;
}
};
}
#endif
|