1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
// 4ary heap data structure
#ifndef HEAP4
#define HEAP4
#include "util.h"
const unsigned long LineSize = 64; // cache line size (or multiple)
template <class Key, class Value>
struct KNElement {Key key; Value value;};
// align an address
// require: sz is a power of two
inline char *knAlign(void *p, unsigned long sz)
{
return (char*)(((unsigned long)p + (sz - 1)) & ~(sz - 1));
}//////////////////////////////////////////////////////////////////////
// fixed size 4-ary heap
template <class Key, class Value>
class Heap4 {
// static const Key infimum = 4;
//static const Key supremum = numeric_limits<Key>.max();
typedef KNElement<Key, Value> Element;
int capacity;
Element * rawData;
Element * const data; // aligned version of rawData
int size; // index of last used element
int finalLayerSize; // size of first layer with free space
int finalLayerDist; // distance to end of layer
public:
Heap4(Key sup, Key infimum, int cap) :
capacity(cap),
rawData(new Element[capacity + 4 + (LineSize-1)/sizeof(Element) + 1]),
data((Element*)knAlign(rawData, LineSize))
{
data[0].key = infimum; // sentinel
data[capacity + 1].key = sup;
data[capacity + 2].key = sup;
data[capacity + 3].key = sup;
reset();
}
~Heap4() { delete [] rawData; }
Key getSupremum() { return data[capacity + 1].key; }
void reset();
int getSize() const { return size; }
Key getMinKey() const { return data[1].key; }
Value getMinValue() const { return data[1].value; }
void deleteMinBasic();
void deleteMin(Key *key, Value *value);
void insert(Key k, Value v);
void print();
//void sortTo(Element *to); // sort in increasing order and empty
//void sortInPlace(); // in decreasing order
};
// reset size to 0 and fill data array with sentinels
template <class Key, class Value>
inline void Heap4<Key, Value>::
reset() {
size = 0;
finalLayerSize = 1;
finalLayerDist = 0;
Key sup = getSupremum();
for (int i = 1; i <= capacity; i++) {
data[i].key = sup;
}
}
template <class Key, class Value>
inline void Heap4<Key, Value>::
deleteMin(Key *key, Value *value)
{
*key = getMinKey();
*value = getMinValue();
deleteMinBasic();
}
template <class Key, class Value>
inline void Heap4<Key, Value>::
deleteMinBasic()
{
Assert2(size > 0);
Key minKey, otherKey;
int delta;
// first move up elements on a min-path
int hole = 1;
int succ = 2;
int layerSize = 4; // size of succ's layer
int layerPos = 0; // pos of succ within its layer
int sz = size;
size = sz - 1;
finalLayerDist++;
if (finalLayerDist == finalLayerSize) { // layer empty now
finalLayerSize >>= 2;
finalLayerDist = 0;
}
while (succ < sz) {
minKey = data[succ].key;
delta = 0;
// I could save a few assignments using
// a complete case distincition but
// this costs in terms of instruction cache load
otherKey = data[succ + 1].key;
if (otherKey < minKey) { minKey = otherKey; delta = 1; }
otherKey = data[succ + 2].key;
if (otherKey < minKey) { minKey = otherKey; delta = 2; }
otherKey = data[succ + 3].key;
if (otherKey < minKey) { minKey = otherKey; delta = 3; }
succ += delta;
layerPos += delta;
// move min successor up
data[hole].key = minKey;
data[hole].value = data[succ].value;
// step to next layer
hole = succ;
succ = succ - layerPos + layerSize; // beginning of next layer
layerPos <<= 2;
succ += layerPos; // now correct value
layerSize <<= 2;
}
// bubble up rightmost element
Key bubble = data[sz].key;
layerSize >>= 2; // now size of hole's layer
layerPos >>= 2; // now pos of hole within its layer
// Assert2(finalLayerSize == layerSize);
int layerDist = layerSize - layerPos - 1; // hole's dist to end of lay.
int pred = hole + layerDist - layerSize; // end of pred's layer for now
layerSize >>= 2; // now size of pred's layer
layerDist >>= 2; // now pred's pos in layer
pred = pred - layerDist; // finally preds index
while (data[pred].key > bubble) { // must terminate since inf at root
data[hole] = data[pred];
hole = pred;
pred = hole + layerDist - layerSize; // end of hole's layer for now
layerSize >>= 2; // now size of pred's layer
layerDist >>= 2;
pred = pred - layerDist; // finally preds index
}
// finally move data to hole
data[hole].key = bubble;
data[hole].value = data[sz].value;
data[sz].key = getSupremum(); // mark as deleted
}
template <class Key, class Value>
void Heap4<Key, Value>::
insert(Key k, Value v)
{
Assert2(size < capacity);
Debug4(cout << "insert(" << k << ", " << v << ")" << endl);
int layerSize = finalLayerSize;
int layerDist = finalLayerDist;
finalLayerDist--;
if (finalLayerDist == -1) { // layer full
// start next layer
finalLayerSize <<= 2;
finalLayerDist = finalLayerSize - 1;
}
size++;
int hole = size;
int pred = hole + layerDist - layerSize; // end of preds's layer for now
layerSize >>= 2; // now size of pred's layer
layerDist >>= 2;
pred = pred - layerDist; // finally preds index
Key predKey = data[pred].key;
while (predKey > k) { // must terminate due to sentinel at 0
data[hole].key = predKey;
data[hole].value = data[pred].value;
hole = pred;
pred = hole + layerDist - layerSize; // end of preds's layer for now
layerSize >>= 2; // now size of pred's layer
layerDist >>= 2;
pred = pred - layerDist; // finally preds index
predKey = data[pred].key;
}
// finally move data to hole
data[hole].key = k;
data[hole].value = v;
}
template <class Key, class Value>
inline void Heap4<Key, Value>::
print()
{
int pos = 1;
for (int layerSize = 1; pos < size; layerSize <<= 2) {
for (int i = 0; i < layerSize && pos + i <= size; i++) {
cout << data[pos + i].key << " ";
}
pos += layerSize;
cout << endl;
}
}
#endif
|