1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
// hierarchical memory priority queue data structure
#ifndef KNHEAP
#define KNHEAP
#include "util.h"
const int KNBufferSize1 = 32; // equalize procedure call overheads etc.
const int KNN = 128; // bandwidth (also size of the binary heap)
const int KNKMAX = 128; // maximal arity
const int KNLevels = 4; // overall capacity >= KNN*KNKMAX^KNLevels
const int LogKNKMAX = 7; // ceil(log KNK)
/*
const int KNBufferSize1 = 3; // equalize procedure call overheads etc.
const int KNN = 10; // bandwidth
const int KNKMAX = 4; // maximal arity
const int KNLevels = 4; // overall capacity >= KNN*KNKMAX^KNLevels
const int LogKNKMAX = 2; // ceil(log KNK)
*/
template <class Key, class Value>
struct KNElement {Key key; Value value;};
//////////////////////////////////////////////////////////////////////
// fixed size binary heap
template <class Key, class Value, int capacity>
class BinaryHeap {
// static const Key infimum = 4;
//static const Key supremum = numeric_limits<Key>.max();
typedef KNElement<Key, Value> Element;
Element data[capacity + 2];
int size; // index of last used element
public:
BinaryHeap(Key sup, Key infimum):size(0) {
data[0].key = infimum; // sentinel
data[capacity + 1].key = sup;
reset();
}
Key getSupremum() { return data[capacity + 1].key; }
void reset();
int getSize() const { return size; }
Key getMinKey() const { return data[1].key; }
Value getMinValue() const { return data[1].value; }
void deleteMin();
void deleteMinFancy(Key *key, Value *value) {
*key = getMinKey();
*value = getMinValue();
deleteMin();
}
void insert(Key k, Value v);
void sortTo(Element *to); // sort in increasing order and empty
//void sortInPlace(); // in decreasing order
};
// reset size to 0 and fill data array with sentinels
template <class Key, class Value, int capacity>
inline void BinaryHeap<Key, Value, capacity>::
reset() {
size = 0;
Key sup = getSupremum();
for (int i = 1; i <= capacity; i++) {
data[i].key = sup;
}
// if this becomes a bottle neck
// we might want to replace this by log KNN
// memcpy-s
}
template <class Key, class Value, int capacity>
inline void BinaryHeap<Key, Value, capacity>::
deleteMin()
{
Assert2(size > 0);
// first move up elements on a min-path
int hole = 1;
int succ = 2;
int sz = size;
while (succ < sz) {
Key key1 = data[succ].key;
Key key2 = data[succ + 1].key;
if (key1 > key2) {
succ++;
data[hole].key = key2;
data[hole].value = data[succ].value;
} else {
data[hole].key = key1;
data[hole].value = data[succ].value;
}
hole = succ;
succ <<= 1;
}
// bubble up rightmost element
Key bubble = data[sz].key;
int pred = hole >> 1;
while (data[pred].key > bubble) { // must terminate since min at root
data[hole] = data[pred];
hole = pred;
pred >>= 1;
}
// finally move data to hole
data[hole].key = bubble;
data[hole].value = data[sz].value;
data[size].key = getSupremum(); // mark as deleted
size = sz - 1;
}
// empty the heap and put the element to "to"
// sorted in increasing order
template <class Key, class Value, int capacity>
inline void BinaryHeap<Key, Value, capacity>::
sortTo(Element *to)
{
const int sz = size;
const Key sup = getSupremum();
Element * const beyond = to + sz;
Element * const root = data + 1;
while (to < beyond) {
// copy minimun
*to = *root;
to++;
// bubble up second smallest as in deleteMin
int hole = 1;
int succ = 2;
while (succ <= sz) {
Key key1 = data[succ ].key;
Key key2 = data[succ + 1].key;
if (key1 > key2) {
succ++;
data[hole].key = key2;
data[hole].value = data[succ].value;
} else {
data[hole].key = key1;
data[hole].value = data[succ].value;
}
hole = succ;
succ <<= 1;
}
// just mark hole as deleted
data[hole].key = sup;
}
size = 0;
}
template <class Key, class Value, int capacity>
inline void BinaryHeap<Key, Value, capacity>::
insert(Key k, Value v)
{
Assert2(size < capacity);
Debug4(cout << "insert(" << k << ", " << v << ")" << endl);
size++;
int hole = size;
int pred = hole >> 1;
Key predKey = data[pred].key;
while (predKey > k) { // must terminate due to sentinel at 0
data[hole].key = predKey;
data[hole].value = data[pred].value;
hole = pred;
pred >>= 1;
predKey = data[pred].key;
}
// finally move data to hole
data[hole].key = k;
data[hole].value = v;
}
//////////////////////////////////////////////////////////////////////
// The data structure from Knuth, "Sorting and Searching", Section 5.4.1
template <class Key, class Value>
class KNLooserTree {
// public: // should not be here but then I would need a scary
// sequence of template friends which I doubt to work
// on all compilers
typedef KNElement<Key, Value> Element;
struct Entry {
Key key; // Key of Looser element (winner for 0)
int index; // number of loosing segment
};
// stack of empty segments
int empty[KNKMAX]; // indices of empty segments
int lastFree; // where in "empty" is the last valid entry?
int size; // total number of elements stored
int logK; // log of current tree size
int k; // invariant k = 1 << logK
Element dummy; // target of empty segment pointers
// upper levels of looser trees
// entry[0] contains the winner info
Entry entry[KNKMAX];
// leaf information
// note that Knuth uses indices k..k-1
// while we use 0..k-1
Element *current[KNKMAX]; // pointer to actual element
Element *segment[KNKMAX]; // start of Segments
// private member functions
int initWinner(int root);
void updateOnInsert(int node, Key newKey, int newIndex,
Key *winnerKey, int *winnerIndex, int *mask);
void deallocateSegment(int index);
void doubleK();
void compactTree();
void rebuildLooserTree();
int segmentIsEmpty(int i);
public:
KNLooserTree();
void init(Key sup); // before, no consistent state is reached :-(
void multiMergeUnrolled3(Element *to, int l);
void multiMergeUnrolled4(Element *to, int l);
void multiMergeUnrolled5(Element *to, int l);
void multiMergeUnrolled6(Element *to, int l);
void multiMergeUnrolled7(Element *to, int l);
void multiMergeUnrolled8(Element *to, int l);
void multiMergeUnrolled9(Element *to, int l);
void multiMergeUnrolled10(Element *to, int l);
void multiMerge(Element *to, int l); // delete l smallest element to "to"
void multiMergeK(Element *to, int l);
int spaceIsAvailable() { return k < KNKMAX || lastFree >= 0; }
// for new segment
void insertSegment(Element *to, int sz); // insert segment beginning at to
int getSize() { return size; }
Key getSupremum() { return dummy.key; }
};
//////////////////////////////////////////////////////////////////////
// 2 level multi-merge tree
template <class Key, class Value>
class KNHeap {
typedef KNElement<Key, Value> Element;
KNLooserTree<Key, Value> tree[KNLevels];
// one delete buffer for each tree (extra space for sentinel)
Element buffer2[KNLevels][KNN + 1]; // tree->buffer2->buffer1
Element *minBuffer2[KNLevels];
// overall delete buffer
Element buffer1[KNBufferSize1 + 1];
Element *minBuffer1;
// insert buffer
BinaryHeap<Key, Value, KNN> insertHeap;
// how many levels are active
int activeLevels;
// total size not counting insertBuffer and buffer1
int size;
// private member functions
void refillBuffer1();
void refillBuffer11(int sz);
void refillBuffer12(int sz);
void refillBuffer13(int sz);
void refillBuffer14(int sz);
int refillBuffer2(int k);
int makeSpaceAvailable(int level);
void emptyInsertHeap();
Key getSupremum() const { return buffer2[0][KNN].key; }
int getSize1( ) const { return ( buffer1 + KNBufferSize1) - minBuffer1; }
int getSize2(int i) const { return &(buffer2[i][KNN]) - minBuffer2[i]; }
public:
KNHeap(Key sup, Key infimum);
int getSize() const;
void getMin(Key *key, Value *value);
void deleteMin(Key *key, Value *value);
void insert(Key key, Value value);
};
template <class Key, class Value>
inline int KNHeap<Key, Value>::getSize() const
{
return
size +
insertHeap.getSize() +
((buffer1 + KNBufferSize1) - minBuffer1);
}
template <class Key, class Value>
inline void KNHeap<Key, Value>::getMin(Key *key, Value *value) {
Key key1 = minBuffer1->key;
Key key2 = insertHeap.getMinKey();
if (key2 >= key1) {
*key = key1;
*value = minBuffer1->value;
} else {
*key = key2;
*value = insertHeap.getMinValue();
}
}
template <class Key, class Value>
inline void KNHeap<Key, Value>::deleteMin(Key *key, Value *value) {
Key key1 = minBuffer1->key;
Key key2 = insertHeap.getMinKey();
if (key2 >= key1) {
*key = key1;
*value = minBuffer1->value;
Assert2(minBuffer1 < buffer1 + KNBufferSize1); // no delete from empty
minBuffer1++;
if (minBuffer1 == buffer1 + KNBufferSize1) {
refillBuffer1();
}
} else {
*key = key2;
*value = insertHeap.getMinValue();
insertHeap.deleteMin();
}
}
template <class Key, class Value>
inline void KNHeap<Key, Value>::insert(Key k, Value v) {
if (insertHeap.getSize() == KNN) { emptyInsertHeap(); }
insertHeap.insert(k, v);
}
#endif
|