File: SpHelper.h

package info (click to toggle)
combblas 2.0.0-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 190,476 kB
  • sloc: cpp: 55,912; ansic: 25,134; sh: 3,691; makefile: 548; csh: 66; python: 49; perl: 21
file content (542 lines) | stat: -rw-r--r-- 18,673 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
/****************************************************************/
/* Parallel Combinatorial BLAS Library (for Graph Computations) */
/* version 1.6 -------------------------------------------------*/
/* date: 6/15/2017 ---------------------------------------------*/
/* authors: Ariful Azad, Aydin Buluc  --------------------------*/
/****************************************************************/
/*
 Copyright (c) 2010-2017, The Regents of the University of California
 
 Permission is hereby granted, free of charge, to any person obtaining a copy
 of this software and associated documentation files (the "Software"), to deal
 in the Software without restriction, including without limitation the rights
 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 copies of the Software, and to permit persons to whom the Software is
 furnished to do so, subject to the following conditions:
 
 The above copyright notice and this permission notice shall be included in
 all copies or substantial portions of the Software.
 
 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 THE SOFTWARE.
 */



#ifndef _SP_HELPER_H_
#define _SP_HELPER_H_

#include <vector>
#include <limits>
#include <map>
#include <string>
#include <utility>
#include "SpDefs.h"
#include "StackEntry.h"
#include "promote.h"
#include "Isect.h"
#include "HeapEntry.h"
#include "SpImpl.h"
#include "hash.hpp"

namespace combblas {

template <class IT, class NT>
class Dcsc;

class SpHelper
{
public:
    
    template <typename T>
    static std::vector<size_t> find_order(const std::vector<T> & values)
    {
        size_t index = 0;
        std::vector< std::pair<T, size_t> > tosort;
        for(auto & val: values)
        {
            tosort.push_back(std::make_pair(val,index++));
        }
        sort(tosort.begin(), tosort.end());
        std::vector<size_t> permutation;
        for(auto & sorted: tosort)
        {
            permutation.push_back(sorted.second);
        }
        return permutation;
    }
    
    template <typename IT1, typename NT1, typename IT2, typename NT2>
    static void push_to_vectors(std::vector<IT1> & rows, std::vector<IT1> & cols, std::vector<NT1> & vals, IT2 ii, IT2 jj, NT2 vv, int symmetric, bool onebased = true)
    {
        if(onebased)
        {
        	ii--;  /* adjust from 1-based to 0-based */
        	jj--;
        }
        rows.push_back(ii);
        cols.push_back(jj);
        vals.push_back(vv);
        if(symmetric && ii != jj)
        {
            rows.push_back(jj);
            cols.push_back(ii);
            vals.push_back(vv);
        }
    }
    
    static void ProcessLinesWithStringKeys(std::vector< std::map < std::string, uint64_t> > & allkeys, std::vector<std::string> & lines, int nprocs)
    {
    	std::string frstr, tostr;
    	uint64_t frhash, tohash;    
    	double vv;
    	for (auto itr=lines.begin(); itr != lines.end(); ++itr)
    	{
		char fr[MAXVERTNAME];
		char to[MAXVERTNAME];
		sscanf(itr->c_str(), "%s %s %lg", fr, to, &vv);
		frstr = std::string(fr);
		tostr = std::string(to);
		MurmurHash3_x64_64(frstr.c_str(),frstr.size(),0,&frhash);
		MurmurHash3_x64_64(tostr.c_str(),tostr.size(),0,&tohash);	

		double range_fr = static_cast<double>(frhash) * static_cast<double>(nprocs);
		double range_to = static_cast<double>(tohash) * static_cast<double>(nprocs);
    		size_t owner_fr = range_fr / static_cast<double>(std::numeric_limits<uint64_t>::max());
    		size_t owner_to = range_to / static_cast<double>(std::numeric_limits<uint64_t>::max());

		// cout << frstr << " with hash " << frhash << " is going to " << owner_fr << endl;
		// cout << tostr << " with hash " << tohash << " is going to " << owner_to << endl;

		allkeys[owner_fr].insert(std::make_pair(frstr, frhash)); 
		allkeys[owner_to].insert(std::make_pair(tostr, tohash));
   	}
        lines.clear();	
    }

    template <typename IT1, typename NT1>
    static void ProcessStrLinesNPermute(std::vector<IT1> & rows, std::vector<IT1> & cols, std::vector<NT1> & vals, std::vector<std::string> & lines, std::map<std::string, uint64_t> & ultperm)
    {
	char * fr = new char[MAXVERTNAME];
    	char * to = new char[MAXVERTNAME];
    	std::string frstr, tostr;
    	double vv;
    	for (auto itr=lines.begin(); itr != lines.end(); ++itr)
    	{
		sscanf(itr->c_str(), "%s %s %lg", fr, to, &vv);
		frstr = std::string(fr);
		tostr = std::string(to);
	
		rows.emplace_back((IT1) ultperm[frstr]);
		cols.emplace_back((IT1) ultperm[tostr]); 
		vals.emplace_back((NT1) vv);
   	}
	delete [] fr;
	delete [] to;
        lines.clear();	
    }



    template <typename IT1, typename NT1>
    static void ProcessLines(std::vector<IT1> & rows, std::vector<IT1> & cols, std::vector<NT1> & vals, std::vector<std::string> & lines, int symmetric, int type, bool onebased = true)
    {
        if(type == 0)   // real
        {
            int64_t ii, jj;
            double vv;
            for (auto itr=lines.begin(); itr != lines.end(); ++itr)
            {
                // string::c_str() -> Returns a pointer to an array that contains a null-terminated sequence of characters (i.e., a C-string)
                sscanf(itr->c_str(), "%lld %lld %lg", &ii, &jj, &vv);
                SpHelper::push_to_vectors(rows, cols, vals, ii, jj, vv, symmetric, onebased);
            }
        }
        else if(type == 1) // integer
        {
            int64_t ii, jj, vv;
            for (auto itr=lines.begin(); itr != lines.end(); ++itr)
            {
                sscanf(itr->c_str(), "%lld %lld %lld", &ii, &jj, &vv);
                SpHelper::push_to_vectors(rows, cols, vals, ii, jj, vv, symmetric, onebased);
            }
        }
        else if(type == 2) // pattern
        {
            int64_t ii, jj;
            for (auto itr=lines.begin(); itr != lines.end(); ++itr)
            {
                sscanf(itr->c_str(), "%lld %lld", &ii, &jj);
                SpHelper::push_to_vectors(rows, cols, vals, ii, jj, 1, symmetric, onebased);
            }
        }
        else
        {
            std::cout << "COMBBLAS: Unrecognized matrix market scalar type" << std::endl;
        }
        lines.clear();
    }


	template <typename T>
	static const T * p2a (const std::vector<T> & v)   // pointer to array
	{
    		if(v.empty()) return NULL;
    		else return (&v[0]);
	}

	template <typename T>
	static T * p2a (std::vector<T> & v)   // pointer to array
	{
    		if(v.empty()) return NULL;
    		else return (&v[0]);
	}


	template<typename _ForwardIterator>
	static bool is_sorted(_ForwardIterator __first, _ForwardIterator __last)
	{
      		if (__first == __last)
        		return true;

      		_ForwardIterator __next = __first;
      		for (++__next; __next != __last; __first = __next, ++__next)
        		if (*__next < *__first)
          			return false;
      		return true;
    	}
  	template<typename _ForwardIterator, typename _StrictWeakOrdering>
    	static bool is_sorted(_ForwardIterator __first, _ForwardIterator __last,  _StrictWeakOrdering __comp)
    	{
      		if (__first == __last)
        		return true;

		_ForwardIterator __next = __first;
		for (++__next; __next != __last; __first = __next, ++__next)
			if (__comp(*__next, *__first))
          			return false;
      		return true;
	}
	template<typename _ForwardIter, typename T>
	static void iota(_ForwardIter __first, _ForwardIter __last, T __val)
	{
		while (__first != __last)
	     		*__first++ = __val++;
	}
	template<typename In, typename Out, typename UnPred>
	static Out copyIf(In first, In last, Out result, UnPred pred) 
	{
   		for ( ;first != last; ++first)
      			if (pred(*first))
         			*result++ = *first;
   		return(result);
	}
	
	template<typename T, typename I1, typename I2>
	static T ** allocate2D(I1 m, I2 n)
	{
		T ** array = new T*[m];
		for(I1 i = 0; i<m; ++i) 
			array[i] = new T[n];
		return array;
	}
	template<typename T, typename I>
	static void deallocate2D(T ** array, I m)
	{
		for(I i = 0; i<m; ++i) 
			delete [] array[i];
		delete [] array;
	}

	
	template <typename SR, typename NT1, typename NT2, typename IT, typename OVT>
	static IT Popping(NT1 * numA, NT2 * numB, StackEntry< OVT, std::pair<IT,IT> > * multstack,
		 	IT & cnz, KNHeap< std::pair<IT,IT> , IT > & sHeap, Isect<IT> * isect1, Isect<IT> * isect2);

	template <typename IT, typename NT1, typename NT2>
	static void SpIntersect(const Dcsc<IT,NT1> & Adcsc, const Dcsc<IT,NT2> & Bdcsc, Isect<IT>* & cols, Isect<IT>* & rows, 
			Isect<IT>* & isect1, Isect<IT>* & isect2, Isect<IT>* & itr1, Isect<IT>* & itr2);

	template <typename SR, typename IT, typename NT1, typename NT2, typename OVT>
	static IT SpCartesian(const Dcsc<IT,NT1> & Adcsc, const Dcsc<IT,NT2> & Bdcsc, IT kisect, Isect<IT> * isect1, 
			Isect<IT> * isect2, StackEntry< OVT, std::pair<IT,IT> > * & multstack);

	template <typename SR, typename IT, typename NT1, typename NT2, typename OVT>
	static IT SpColByCol(const Dcsc<IT,NT1> & Adcsc, const Dcsc<IT,NT2> & Bdcsc, IT nA,	 
			StackEntry< OVT, std::pair<IT,IT> > * & multstack);

	template <typename NT, typename IT>
	static void ShrinkArray(NT * & array, IT newsize)
	{
		NT * narray = new NT[newsize];
		memcpy(narray, array, newsize*sizeof(NT));	// copy only a portion of the old elements

		delete [] array;
		array = narray;		
	}

	template <typename NT, typename IT>
	static void DoubleStack(StackEntry<NT, std::pair<IT,IT> > * & multstack, IT & cnzmax, IT add)
	{
		StackEntry<NT, std::pair<IT,IT> > * tmpstack = multstack; 		
		multstack = new StackEntry<NT, std::pair<IT,IT> >[2* cnzmax + add];
		memcpy(multstack, tmpstack, sizeof(StackEntry<NT, std::pair<IT,IT> >) * cnzmax);
		
		cnzmax = 2*cnzmax + add;
		delete [] tmpstack;
	}

	template <typename IT>
	static bool first_compare(std::pair<IT, IT> pair1, std::pair<IT, IT> pair2) 
	{ return pair1.first < pair2.first; }

};




/**
 * Pop an element, do the numerical semiring multiplication & insert the result into multstack
 */
template <typename SR, typename NT1, typename NT2, typename IT, typename OVT>
IT SpHelper::Popping(NT1 * numA, NT2 * numB, StackEntry< OVT, std::pair<IT,IT> > * multstack, 
			IT & cnz, KNHeap< std::pair<IT,IT>,IT > & sHeap, Isect<IT> * isect1, Isect<IT> * isect2)
{
	std::pair<IT,IT> key;	
	IT inc;
	sHeap.deleteMin(&key, &inc);

	OVT value = SR::multiply(numA[isect1[inc].current], numB[isect2[inc].current]);
	if (!SR::returnedSAID())
	{
		if(cnz != 0)
		{
			if(multstack[cnz-1].key == key)	// already exists
			{
				multstack[cnz-1].value = SR::add(multstack[cnz-1].value, value);
			}
			else
			{
				multstack[cnz].value = value;
				multstack[cnz].key   = key;
				++cnz;
			}
		}
		else
		{
			multstack[cnz].value = value;
			multstack[cnz].key   = key;
			++cnz;
		}
	}
	return inc;
}

/**
  * Finds the intersecting row indices of Adcsc and col indices of Bdcsc  
  * @param[IT] Bdcsc {the transpose of the dcsc structure of matrix B}
  * @param[IT] Adcsc {the dcsc structure of matrix A}
  **/
template <typename IT, typename NT1, typename NT2>
void SpHelper::SpIntersect(const Dcsc<IT,NT1> & Adcsc, const Dcsc<IT,NT2> & Bdcsc, Isect<IT>* & cols, Isect<IT>* & rows, 
				Isect<IT>* & isect1, Isect<IT>* & isect2, Isect<IT>* & itr1, Isect<IT>* & itr2)
{
	cols = new Isect<IT>[Adcsc.nzc];
	rows = new Isect<IT>[Bdcsc.nzc];
	
	for(IT i=0; i < Adcsc.nzc; ++i)			
	{
		cols[i].index	= Adcsc.jc[i];		// column index
		cols[i].size	= Adcsc.cp[i+1] - Adcsc.cp[i];
		cols[i].start	= Adcsc.cp[i];		// pointer to row indices
		cols[i].current = Adcsc.cp[i];		// pointer to row indices
	}
	for(IT i=0; i < Bdcsc.nzc; ++i)			
	{
		rows[i].index	= Bdcsc.jc[i];		// column index
		rows[i].size	= Bdcsc.cp[i+1] - Bdcsc.cp[i];
		rows[i].start	= Bdcsc.cp[i];		// pointer to row indices
		rows[i].current = Bdcsc.cp[i];		// pointer to row indices
	}

	/* A single set_intersection would only return the elements of one sequence 
	 * But we also want random access to the other array's elements 
	 * Thus we do the intersection twice
	 */
	IT mink = std::min(Adcsc.nzc, Bdcsc.nzc);
	isect1 = new Isect<IT>[mink];	// at most
	isect2 = new Isect<IT>[mink];	// at most
	itr1 = std::set_intersection(cols, cols + Adcsc.nzc, rows, rows + Bdcsc.nzc, isect1);	
	itr2 = std::set_intersection(rows, rows + Bdcsc.nzc, cols, cols + Adcsc.nzc, isect2);	
	// itr1 & itr2 are now pointing to one past the end of output sequences
}

/**
 * Performs cartesian product on the dcsc structures. 
 * Indices to perform the product are given by isect1 and isect2 arrays
 * Returns the "actual" number of elements in the merged stack
 * Bdcsc is "already transposed" (i.e. Bdcsc->ir gives column indices, and Bdcsc->jc gives row indices)
 **/
template <typename SR, typename IT, typename NT1, typename NT2, typename OVT>
IT SpHelper::SpCartesian(const Dcsc<IT,NT1> & Adcsc, const Dcsc<IT,NT2> & Bdcsc, IT kisect, Isect<IT> * isect1, 
		Isect<IT> * isect2, StackEntry< OVT, std::pair<IT,IT> > * & multstack)
{	
	std::pair<IT,IT> supremum(std::numeric_limits<IT>::max(), std::numeric_limits<IT>::max());
	std::pair<IT,IT> infimum (std::numeric_limits<IT>::min(), std::numeric_limits<IT>::min());
 
	KNHeap< std::pair<IT,IT> , IT > sHeapDcsc(supremum, infimum);	

	// Create a sequence heap that will eventually construct DCSC of C
	// The key to sort is pair<col_ind, row_ind> so that output is in column-major order
	for(IT i=0; i< kisect; ++i)
	{
		std::pair<IT,IT> key(Bdcsc.ir[isect2[i].current], Adcsc.ir[isect1[i].current]);
		sHeapDcsc.insert(key, i);
	}

	IT cnz = 0;						
	IT cnzmax = Adcsc.nz + Bdcsc.nz;	// estimate on the size of resulting matrix C
	multstack = new StackEntry< OVT, std::pair<IT,IT> > [cnzmax];	

	bool finished = false;
	while(!finished)		// multiplication loop  (complexity O(flops * log (kisect))
	{
		finished = true;
		if (cnz + kisect > cnzmax)		// double the size of multstack
		{
			DoubleStack(multstack, cnzmax, kisect);
		} 

		// inc: the list to increment its pointer in the k-list merging
		IT inc = Popping< SR >(Adcsc.numx, Bdcsc.numx, multstack, cnz, sHeapDcsc, isect1, isect2);
		isect1[inc].current++;	
		
		if(isect1[inc].current < isect1[inc].size + isect1[inc].start)
		{
			std::pair<IT,IT> key(Bdcsc.ir[isect2[inc].current], Adcsc.ir[isect1[inc].current]);
			sHeapDcsc.insert(key, inc);	// push the same element with a different key [increasekey]
			finished = false;
		}
		// No room to go in isect1[], but there is still room to go in isect2[i]
		else if(isect2[inc].current + 1 < isect2[inc].size + isect2[inc].start)
		{
			isect1[inc].current = isect1[inc].start;	// wrap-around
			isect2[inc].current++;

			std::pair<IT,IT> key(Bdcsc.ir[isect2[inc].current], Adcsc.ir[isect1[inc].current]);
			sHeapDcsc.insert(key, inc);	// push the same element with a different key [increasekey]
			finished = false;
		}
		else // don't push, one of the lists has been deplated
		{
			kisect--;
			if(kisect != 0)
			{
				finished = false;
			}
		}
	}
	return cnz;
}


template <typename SR, typename IT, typename NT1, typename NT2, typename OVT>
IT SpHelper::SpColByCol(const Dcsc<IT,NT1> & Adcsc, const Dcsc<IT,NT2> & Bdcsc, IT nA, 
			StackEntry< OVT, std::pair<IT,IT> > * & multstack)
{
	IT cnz = 0;
	IT cnzmax = Adcsc.nz + Bdcsc.nz;	// estimate on the size of resulting matrix C
	multstack = new StackEntry<OVT, std::pair<IT,IT> >[cnzmax];	 

	float cf  = static_cast<float>(nA+1) / static_cast<float>(Adcsc.nzc);
	IT csize = static_cast<IT>(ceil(cf));   // chunk size
	IT * aux;
	//IT auxsize = Adcsc.ConstructAux(nA, aux);
	Adcsc.ConstructAux(nA, aux);

	for(IT i=0; i< Bdcsc.nzc; ++i)		// for all the columns of B
	{
		IT prevcnz = cnz;
		IT nnzcol = Bdcsc.cp[i+1] - Bdcsc.cp[i];
		HeapEntry<IT, NT1> * wset = new HeapEntry<IT, NT1>[nnzcol]; 
		// heap keys are just row indices (IT) 
		// heap values are <numvalue, runrank>  
		// heap size is nnz(B(:,i)

		// colnums vector keeps column numbers requested from A
		std::vector<IT> colnums(nnzcol);

		// colinds.first vector keeps indices to A.cp, i.e. it dereferences "colnums" vector (above),
		// colinds.second vector keeps the end indices (i.e. it gives the index to the last valid element of A.cpnack)
		std::vector< std::pair<IT,IT> > colinds(nnzcol);		
    std::copy(Bdcsc.ir + Bdcsc.cp[i], Bdcsc.ir + Bdcsc.cp[i+1], colnums.begin());
		
		Adcsc.FillColInds(&colnums[0], colnums.size(), colinds, aux, csize);
		IT maxnnz = 0;	// max number of nonzeros in C(:,i)	
		IT hsize = 0;
		
		for(IT j = 0; (unsigned)j < colnums.size(); ++j)		// create the initial heap 
		{
			if(colinds[j].first != colinds[j].second)	// current != end
			{
				wset[hsize++] = HeapEntry< IT,NT1 > (Adcsc.ir[colinds[j].first], j, Adcsc.numx[colinds[j].first]);
				maxnnz += colinds[j].second - colinds[j].first;
			} 
		}	
		std::make_heap(wset, wset+hsize);

		if (cnz + maxnnz > cnzmax)		// double the size of multstack
		{
			SpHelper::DoubleStack(multstack, cnzmax, maxnnz);
		} 

		// No need to keep redefining key and hentry with each iteration of the loop
		while(hsize > 0)
		{
			std::pop_heap(wset, wset + hsize);         // result is stored in wset[hsize-1]
			IT locb = wset[hsize-1].runr;	// relative location of the nonzero in B's current column 

			// type promotion done here: 
			// static T_promote multiply(const T1 & arg1, const T2 & arg2)
			//	return (static_cast<T_promote>(arg1) * static_cast<T_promote>(arg2) );
			OVT mrhs = SR::multiply(wset[hsize-1].num, Bdcsc.numx[Bdcsc.cp[i]+locb]);
			if (!SR::returnedSAID())
			{
				if(cnz != prevcnz && multstack[cnz-1].key.second == wset[hsize-1].key)	// if (cnz == prevcnz) => first nonzero for this column
				{
					multstack[cnz-1].value = SR::add(multstack[cnz-1].value, mrhs);
				}
				else
				{
					multstack[cnz].value = mrhs;
					multstack[cnz++].key = std::make_pair(Bdcsc.jc[i], wset[hsize-1].key);	
					// first entry is the column index, as it is in column-major order
				}
			}
			
			if( (++(colinds[locb].first)) != colinds[locb].second)	// current != end
			{
				// runr stays the same !
				wset[hsize-1].key = Adcsc.ir[colinds[locb].first];
				wset[hsize-1].num = Adcsc.numx[colinds[locb].first];  
				std::push_heap(wset, wset+hsize);
			}
			else
			{
				--hsize;
			}
		}
		delete [] wset;
	}
	delete [] aux;
	return cnz;
}

}

#endif