File: SpImpl.cpp

package info (click to toggle)
combblas 2.0.0-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 190,476 kB
  • sloc: cpp: 55,912; ansic: 25,134; sh: 3,691; makefile: 548; csh: 66; python: 49; perl: 21
file content (701 lines) | stat: -rw-r--r-- 24,011 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
/****************************************************************/
/* Parallel Combinatorial BLAS Library (for Graph Computations) */
/* version 1.6 -------------------------------------------------*/
/* date: 6/15/2017 ---------------------------------------------*/
/* authors: Ariful Azad, Aydin Buluc  --------------------------*/
/****************************************************************/
/*
 Copyright (c) 2010-2017, The Regents of the University of California
 
 Permission is hereby granted, free of charge, to any person obtaining a copy
 of this software and associated documentation files (the "Software"), to deal
 in the Software without restriction, including without limitation the rights
 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 copies of the Software, and to permit persons to whom the Software is
 furnished to do so, subject to the following conditions:
 
 The above copyright notice and this permission notice shall be included in
 all copies or substantial portions of the Software.
 
 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 THE SOFTWARE.
 */


#include "SpImpl.h"
#include "SpParHelper.h"
#include "PBBS/radixSort.h"
#include "Tommy/tommyhashdyn.h"

namespace combblas {

/**
 * Base template version [full use of the semiring add() and multiply()]
 * @param[in] indx { vector that practically keeps column numbers requested from A }
 *
 *
 * Roughly how the below function works:
 * Let's say our sparse vector has entries at 3, 7 and 9.
 * FillColInds() creates a vector of pairs that contain the
 * start and end indices (into matrix.ir and matrix.numx arrays).
 * pair.first is the start index, pair.second is the end index.
 *
 * Here's how we merge these adjacencies of 3,7 and 9:
 * We keep a heap of size 3 and push the first entries in adj{3}, adj{7}, adj{9} onto the heap wset.
 * That happens in the first for loop.
 *
 * Then as we pop from the heap we push the next entry from the previously popped adjacency (i.e. matrix column).
 * The heap ensures the output comes out sorted without using a SPA.
 * that's why indy.back() == wset[hsize-1].key is enough to ensure proper merging.
 **/
template <class SR, class IT, class NUM, class IVT, class OVT>
void SpImpl<SR,IT,NUM,IVT,OVT>::SpMXSpV(const Dcsc<IT,NUM> & Adcsc, int32_t mA, const int32_t * indx, const IVT * numx, int32_t veclen,  
			std::vector<int32_t> & indy, std::vector< OVT > & numy)
{
	int32_t hsize = 0;		
	// colinds dereferences A.ir (valid from colinds[].first to colinds[].second)
	std::vector< std::pair<IT,IT> > colinds( (IT) veclen);		
	Adcsc.FillColInds(indx, (IT) veclen, colinds, NULL, 0);	// csize is irrelevant if aux is NULL	

	if(sizeof(NUM) > sizeof(OVT))	// ABAB: include a filtering based runtime choice as well?
	{
		HeapEntry<IT, OVT> * wset = new HeapEntry<IT, OVT>[veclen]; 
		for(IT j =0; j< veclen; ++j)		// create the initial heap 
		{
			while(colinds[j].first != colinds[j].second )	// iterate until finding the first entry within this column that passes the filter
			{
				OVT mrhs = SR::multiply(Adcsc.numx[colinds[j].first], numx[j]);
				if(SR::returnedSAID())
				{
					++(colinds[j].first);	// increment the active row index within the jth column
				}
				else
				{
					wset[hsize++] = HeapEntry< IT,OVT > ( Adcsc.ir[colinds[j].first], j, mrhs);
					break;	// this column successfully inserted an entry to the heap
				}
			} 
		}
		std::make_heap(wset, wset+hsize);
		while(hsize > 0)
		{
			std::pop_heap(wset, wset + hsize);         	// result is stored in wset[hsize-1]
			IT locv = wset[hsize-1].runr;		// relative location of the nonzero in sparse column vector 
			if((!indy.empty()) && indy.back() == wset[hsize-1].key)	
			{
				numy.back() = SR::add(numy.back(), wset[hsize-1].num);
			}
			else
			{
				indy.push_back( (int32_t) wset[hsize-1].key);
				numy.push_back(wset[hsize-1].num);	
			}
			bool pushed = false;
			// invariant: if ++(colinds[locv].first) == colinds[locv].second, then locv will not appear again in the heap
			while ( (++(colinds[locv].first)) != colinds[locv].second )	// iterate until finding another passing entry
			{
				OVT mrhs =  SR::multiply(Adcsc.numx[colinds[locv].first], numx[locv]);
				if(!SR::returnedSAID())
                                {
					wset[hsize-1].key = Adcsc.ir[colinds[locv].first];
					wset[hsize-1].num = mrhs;
					std::push_heap(wset, wset+hsize);	// runr stays the same
					pushed = true;
					break;
				}
			}
			if(!pushed)	--hsize;
		}
		delete [] wset;
	}
	
	else
	{
		HeapEntry<IT, NUM> * wset = new HeapEntry<IT, NUM>[veclen]; 
		for(IT j =0; j< veclen; ++j)		// create the initial heap 
		{
			if(colinds[j].first != colinds[j].second)	// current != end
			{
				wset[hsize++] = HeapEntry< IT,NUM > ( Adcsc.ir[colinds[j].first], j, Adcsc.numx[colinds[j].first]);  // HeapEntry(key, run, num)
			} 
		}	
		std::make_heap(wset, wset+hsize);
		while(hsize > 0)
		{
			std::pop_heap(wset, wset + hsize);         	// result is stored in wset[hsize-1]
			IT locv = wset[hsize-1].runr;		// relative location of the nonzero in sparse column vector 
			OVT mrhs = SR::multiply(wset[hsize-1].num, numx[locv]);	
		
			if (!SR::returnedSAID())
			{
				if((!indy.empty()) && indy.back() == wset[hsize-1].key)	
				{
					numy.back() = SR::add(numy.back(), mrhs);
				}
				else
				{
					indy.push_back( (int32_t) wset[hsize-1].key);
					numy.push_back(mrhs);	
				}
			}

			if( (++(colinds[locv].first)) != colinds[locv].second)	// current != end
			{
				// runr stays the same !
				wset[hsize-1].key = Adcsc.ir[colinds[locv].first];
				wset[hsize-1].num = Adcsc.numx[colinds[locv].first];  
				std::push_heap(wset, wset+hsize);
			}
			else		--hsize;
		}
		delete [] wset;
	}
}



/**
  * One of the two versions of SpMXSpV with on boolean matrix [uses only Semiring::add()]
  * This version is likely to be more memory efficient than the other one (the one that uses preallocated memory buffers)
  * Because here we don't use a dense accumulation vector but a heap. It will probably be slower though. 
**/
template <class SR, class IT, class IVT, class OVT>
void SpImpl<SR,IT,bool,IVT,OVT>::SpMXSpV(const Dcsc<IT,bool> & Adcsc, int32_t mA, const int32_t * indx, const IVT * numx, int32_t veclen,  
			std::vector<int32_t> & indy, std::vector<OVT> & numy)
{   
	IT inf = std::numeric_limits<IT>::min();
	IT sup = std::numeric_limits<IT>::max(); 
	KNHeap< IT, IVT > sHeap(sup, inf); 	// max size: flops

	IT k = 0; 	// index to indx vector
	IT i = 0; 	// index to columns of matrix
	while(i< Adcsc.nzc && k < veclen)
	{
		if(Adcsc.jc[i] < indx[k]) ++i;
		else if(indx[k] < Adcsc.jc[i]) ++k;
		else
		{
			for(IT j=Adcsc.cp[i]; j < Adcsc.cp[i+1]; ++j)	// for all nonzeros in this column
			{
				sHeap.insert(Adcsc.ir[j], numx[k]);	// row_id, num
			}
			++i;
			++k;
		}
	}

	IT row;
	IVT num;
	if(sHeap.getSize() > 0)
	{
		sHeap.deleteMin(&row, &num);
		indy.push_back( (int32_t) row);
		numy.push_back( num );
	}
	while(sHeap.getSize() > 0)
	{
		sHeap.deleteMin(&row, &num);
		if(indy.back() == row)
		{
			numy.back() = SR::add(numy.back(), num);
		}
		else
		{
			indy.push_back( (int32_t) row);
			numy.push_back(num);
		}
	}		
}


/**
 * @param[in,out]   indy,numy,cnts 	{preallocated arrays to be filled}
 * @param[in] 		dspls	{displacements to preallocated indy,numy buffers}
 * This version determines the receiving column neighbor and adjust the indices to the receiver's local index
 * If IVT and OVT are different, then OVT should allow implicit conversion from IVT
**/
template <typename SR, typename IT, typename IVT, class OVT>
void SpImpl<SR,IT,bool,IVT,OVT>::SpMXSpV(const Dcsc<IT,bool> & Adcsc, int32_t mA, const int32_t * indx, const IVT * numx, int32_t veclen,  
			int32_t * indy, OVT * numy, int * cnts, int * dspls, int p_c)
{   
	OVT * localy = new OVT[mA];
	BitMap isthere(mA);
	std::vector< std::vector<int32_t> > nzinds(p_c);	// nonzero indices		

	int32_t perproc = mA / p_c;	
	int32_t k = 0; 	// index to indx vector
	IT i = 0; 	// index to columns of matrix
	while(i< Adcsc.nzc && k < veclen)
	{
		if(Adcsc.jc[i] < indx[k]) ++i;
		else if(indx[k] < Adcsc.jc[i]) ++k;
		else
		{
			for(IT j=Adcsc.cp[i]; j < Adcsc.cp[i+1]; ++j)	// for all nonzeros in this column
			{
				int32_t rowid = (int32_t) Adcsc.ir[j];
				if(!isthere.get_bit(rowid))
				{
					int32_t owner = std::min(rowid / perproc, static_cast<int32_t>(p_c-1)); 			
					localy[rowid] = numx[k];	// initial assignment, requires implicit conversion if IVT != OVT
					nzinds[owner].push_back(rowid);
                    isthere.set_bit(rowid);
				}
				else	
				{
					localy[rowid] = SR::add(localy[rowid], numx[k]);
				}	
			}
			++i;
			++k;
		}
	}

	for(int p = 0; p< p_c; ++p)
	{
		sort(nzinds[p].begin(), nzinds[p].end());
		cnts[p] = nzinds[p].size();
		int32_t * locnzinds = &nzinds[p][0];
		int32_t offset = perproc * p;
		for(int i=0; i< cnts[p]; ++i)
		{
			indy[dspls[p]+i] = locnzinds[i] - offset;	// convert to local offset
			numy[dspls[p]+i] = localy[locnzinds[i]]; 	
		}
	}
	delete [] localy;
}


// this version is still very good with splitters
template <typename SR, typename IT, typename IVT, typename OVT>
void SpImpl<SR,IT,bool,IVT,OVT>::SpMXSpV_ForThreading(const Dcsc<IT,bool> & Adcsc, int32_t mA, const int32_t * indx, const IVT * numx, int32_t veclen,
                                                      std::vector<int32_t> & indy, std::vector<OVT> & numy, int32_t offset)
{
    std::vector<OVT> localy(mA);
    BitMap isthere(mA);
    std::vector<uint32_t> nzinds;	// nonzero indices
    
    SpMXSpV_ForThreading(Adcsc, mA, indx, numx, veclen, indy, numy, offset, localy, isthere, nzinds);
}



//! We can safely use a SPA here because Adcsc is short (::RowSplit() has already been called on it)
template <typename SR, typename IT, typename IVT, typename OVT>
void SpImpl<SR,IT,bool,IVT,OVT>::SpMXSpV_ForThreading(const Dcsc<IT,bool> & Adcsc, int32_t mA, const int32_t * indx, const IVT * numx, int32_t veclen, std::vector<int32_t> & indy, std::vector<OVT> & numy, int32_t offset, std::vector<OVT> & localy, BitMap & isthere, std::vector<uint32_t> & nzinds)
{
	// The following piece of code is not general, but it's more memory efficient than FillColInds
	int32_t k = 0; 	// index to indx vector
	IT i = 0; 	// index to columns of matrix
	while(i< Adcsc.nzc && k < veclen)
	{
		if(Adcsc.jc[i] < indx[k]) ++i;
		else if(indx[k] < Adcsc.jc[i]) ++k;
		else
		{
			for(IT j=Adcsc.cp[i]; j < Adcsc.cp[i+1]; ++j)	// for all nonzeros in this column
			{
				uint32_t rowid = (uint32_t) Adcsc.ir[j];
				if(!isthere.get_bit(rowid))
				{
					localy[rowid] = numx[k];	// initial assignment
					nzinds.push_back(rowid);
					isthere.set_bit(rowid);
				}
				else
				{
					localy[rowid] = SR::add(localy[rowid], numx[k]);
				}	
			}
			++i; ++k;
		}
	}
    int nnzy = nzinds.size();
    integerSort(nzinds.data(), nnzy);
	indy.resize(nnzy);
	numy.resize(nnzy);
	for(int i=0; i< nnzy; ++i)
	{
		indy[i] = nzinds[i] + offset;	// return column-global index and let gespmv determine the receiver's local index
		numy[i] = localy[nzinds[i]]; 	
	}
}





/**
 * SpMXSpV with HeapSort
 * Simply insert entries from columns corresponsing to nonzeros of the input vector into a minHeap
 * Then extract entries from the minHeap
 * Complexity: O(flops*log(flops))
 * offset is the offset of indices in the matrix in case the matrix is split
 * This version is likely to be more memory efficient than the other one (the one that uses preallocated memory buffers)
 * Because here we don't use a dense accumulation vector but a heap. It will probably be slower though.
 **/

template <typename SR, typename IT, typename NT, typename IVT, typename OVT>
void SpMXSpV_HeapSort(const Csc<IT,NT> & Acsc, int32_t mA, const int32_t * indx, const IVT * numx, int32_t veclen, std::vector<int32_t> & indy, std::vector<OVT> & numy, int32_t offset)
{
    IT inf = std::numeric_limits<IT>::min();
    IT sup = std::numeric_limits<IT>::max();
    KNHeap< IT, OVT > sHeap(sup, inf);
    
    
    for (int32_t k = 0; k < veclen; ++k)
    {
        IT colid = indx[k];
        for(IT j=Acsc.jc[colid]; j < Acsc.jc[colid+1]; ++j)
        {
            OVT val = SR::multiply( Acsc.num[j], numx[k]);
            sHeap.insert(Acsc.ir[j], val);
        }
    }
    
    IT row;
    OVT num;
    if(sHeap.getSize() > 0)
    {
        sHeap.deleteMin(&row, &num);
        row += offset;
        indy.push_back( (int32_t) row);
        numy.push_back( num );
    }
    while(sHeap.getSize() > 0)
    {
        sHeap.deleteMin(&row, &num);
        row += offset;
        if(indy.back() == row)
        {
            numy.back() = SR::add(numy.back(), num);
        }
        else
        {
            indy.push_back( (int32_t) row);
            numy.push_back(num);
        }
    }
}



template <typename SR, typename IT, typename NT, typename IVT, typename OVT>
void SpMXSpV_Bucket(const Csc<IT,NT> & Acsc, int32_t mA, const int32_t * indx, const IVT * numx, int32_t veclen,
                         std::vector<int32_t> & indy, std::vector< OVT > & numy, PreAllocatedSPA<OVT> & SPA)
{
    if(veclen==0)
        return;
    
    double tstart = MPI_Wtime();
    int nthreads=1;
    int rowSplits = SPA.buckets; // SPA must be initialized as checked in SpImpl.h
#ifdef _OPENMP
#pragma omp parallel
    {
        nthreads = omp_get_num_threads();
    }
#endif
    if(rowSplits < nthreads)
    {
        std::ostringstream outs;
        outs << "Warning in SpMXSpV_Bucket: " << rowSplits << " buckets are supplied for " << nthreads << " threads\n";
        outs << "4 times the number of threads are recommended when creating PreAllocatedSPA\n";
        SpParHelper::Print(outs.str());
    }
    
    int32_t rowPerSplit = mA / rowSplits;
    
    
    //------------------------------------------------------
    // Step1: count the nnz in each rowsplit of the matrix,
    // because we don't want to waste memory
    // False sharing is not a big problem because it is written outside of the main loop
    //------------------------------------------------------
    
    std::vector<std::vector<int32_t>> bSize(rowSplits, std::vector<int32_t> ( rowSplits, 0));
    std::vector<std::vector<int32_t>> bOffset(rowSplits, std::vector<int32_t> ( rowSplits, 0));
    std::vector<int32_t> sendSize(rowSplits);
    double t0, t1, t2, t3, t4;
#ifdef BENCHMARK_SPMSPV
    t0 = MPI_Wtime();
#endif
    
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic, 1)
#endif
    for(int b=0; b<rowSplits; b++)
    {
        // evenly balance nnz of x among threads
        int perBucket = veclen/rowSplits;
        int spill = veclen%rowSplits;
        int32_t xstart = b*perBucket + std::min(spill, b);
        int32_t xend = (b+1)*perBucket + std::min(spill, b+1);
        std::vector<int32_t> temp(rowSplits,0);
        for (int32_t i = xstart; i < xend; ++i)
        {
            IT colid = indx[i];
            for(IT j=Acsc.jc[colid]; j < Acsc.jc[colid+1]; ++j)
            {
                uint32_t rowid = (uint32_t) Acsc.ir[j];
                int32_t splitId = rowSplits-1;
                if(rowPerSplit!=0) splitId = (rowid/rowPerSplit > rowSplits-1) ? rowSplits-1 : rowid/rowPerSplit;
                //bSize[b][splitId]++;
                temp[splitId]++;
            }
        }
        int32_t totSend = 0;
        for(int k=0; k<rowSplits; k++)
        {
            bSize[b][k] = temp[k];
            totSend += temp[k];
        }
        sendSize[b] = totSend;
    }
    
    
#ifdef BENCHMARK_SPMSPV
    t1 = MPI_Wtime() - t0;
    t0 = MPI_Wtime();
#endif
    
    
    
    // keep it sequential to avoid fault sharing
    for(int i=1; i<rowSplits; i++)
    {
        for(int j=0; j<rowSplits; j++)
        {
            bOffset[i][j] = bOffset[i-1][j] + bSize[i-1][j];
            bSize[i-1][j] = 0;
        }
    }
    
    std::vector<uint32_t> disp(rowSplits+1);
    int maxBucketSize = -1; // maximum size of a bucket
    disp[0] = 0;
    for(int j=0; j<rowSplits; j++)
    {
        int thisBucketSize = bOffset[rowSplits-1][j] + bSize[rowSplits-1][j];
        disp[j+1] = disp[j] + thisBucketSize;
        bSize[rowSplits-1][j] = 0;
        maxBucketSize = std::max(thisBucketSize, maxBucketSize);
    }
    
    
    
#ifdef BENCHMARK_SPMSPV
    double  tseq = MPI_Wtime() - t0;
#endif
    //------------------------------------------------------
    // Step2: The matrix is traversed column by column and
    // nonzeros each rowsplit of the matrix are compiled together
    //------------------------------------------------------
    // Thread private buckets should fit in L2 cache
#ifndef L2_CACHE_SIZE
#define L2_CACHE_SIZE 256000
#endif
    int THREAD_BUF_LEN = 256;
    int itemsize = sizeof(int32_t) + sizeof(OVT);
    while(true)
    {
        int bufferMem = THREAD_BUF_LEN * rowSplits * itemsize + 8 * rowSplits;
        if(bufferMem>L2_CACHE_SIZE ) THREAD_BUF_LEN/=2;
        else break;
    }
    THREAD_BUF_LEN = std::min(maxBucketSize+1,THREAD_BUF_LEN);
    
#ifdef BENCHMARK_SPMSPV
    t0 = MPI_Wtime();
#endif
    
#ifdef _OPENMP
#pragma omp parallel
#endif
    {
        int32_t* tIndSplitA = new int32_t[rowSplits*THREAD_BUF_LEN];
        OVT* tNumSplitA = new OVT[rowSplits*THREAD_BUF_LEN];
        std::vector<int32_t> tBucketSize(rowSplits);
        std::vector<int32_t> tOffset(rowSplits);
#ifdef _OPENMP
#pragma omp for schedule(dynamic,1)
#endif
        for(int b=0; b<rowSplits; b++)
        {
            
            std::fill(tBucketSize.begin(), tBucketSize.end(), 0);
            std::fill(tOffset.begin(), tOffset.end(), 0);
            int perBucket = veclen/rowSplits;
            int spill = veclen%rowSplits;
            int32_t xstart = b*perBucket + std::min(spill, b);
            int32_t xend = (b+1)*perBucket + std::min(spill, b+1);
            
            for (int32_t i = xstart; i < xend; ++i)
            {
                IT colid = indx[i];
                for(IT j=Acsc.jc[colid]; j < Acsc.jc[colid+1]; ++j)
                {
                    OVT val = SR::multiply( Acsc.num[j], numx[i]);
                    uint32_t rowid = (uint32_t) Acsc.ir[j];
                    int32_t splitId = rowSplits-1;
                    if(rowPerSplit!=0) splitId = (rowid/rowPerSplit > rowSplits-1) ? rowSplits-1 : rowid/rowPerSplit;
                    if (tBucketSize[splitId] < THREAD_BUF_LEN)
                    {
                        tIndSplitA[splitId*THREAD_BUF_LEN + tBucketSize[splitId]] = rowid;
                        tNumSplitA[splitId*THREAD_BUF_LEN  + tBucketSize[splitId]++] = val;
                    }
                    else
                    {
                        std::copy(tIndSplitA + splitId*THREAD_BUF_LEN, tIndSplitA + (splitId+1)*THREAD_BUF_LEN, &SPA.indSplitA[disp[splitId] + bOffset[b][splitId]] + tOffset[splitId]);
                        std::copy(tNumSplitA + splitId*THREAD_BUF_LEN, tNumSplitA + (splitId+1)*THREAD_BUF_LEN, &SPA.numSplitA[disp[splitId] + bOffset[b][splitId]] + tOffset[splitId]);
                        tIndSplitA[splitId*THREAD_BUF_LEN] = rowid;
                        tNumSplitA[splitId*THREAD_BUF_LEN] = val;
                        tOffset[splitId] += THREAD_BUF_LEN ;
                        tBucketSize[splitId] = 1;
                    }
                }
            }
            
            for(int splitId=0; splitId<rowSplits; ++splitId)
            {
                if(tBucketSize[splitId]>0)
                {
                    std::copy(tIndSplitA + splitId*THREAD_BUF_LEN, tIndSplitA + splitId*THREAD_BUF_LEN + tBucketSize[splitId], &SPA.indSplitA[disp[splitId] + bOffset[b][splitId]] + tOffset[splitId]);
                    std::copy(tNumSplitA + splitId*THREAD_BUF_LEN, tNumSplitA + splitId*THREAD_BUF_LEN + tBucketSize[splitId], &SPA.numSplitA[disp[splitId] + bOffset[b][splitId]] + tOffset[splitId]);
                }
            }
        }
        delete [] tIndSplitA;
        delete [] tNumSplitA;
    }
    
#ifdef BENCHMARK_SPMSPV
    t2 = MPI_Wtime() - t0;
    t0 = MPI_Wtime();
#endif
    std::vector<uint32_t> nzInRowSplits(rowSplits);
    uint32_t* nzinds = new uint32_t[disp[rowSplits]];
    
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,1)
#endif
    for(int rs=0; rs<rowSplits; ++rs)
    {
        
        for(int i=disp[rs]; i<disp[rs+1] ; i++)
        {
            int32_t lrowid = SPA.indSplitA[i] - rs * rowPerSplit;
            SPA.V_isthereBool[rs][lrowid] = false;
        }
        uint32_t tMergeDisp = disp[rs];
        for(int i=disp[rs]; i<disp[rs+1] ; i++)
        {
            int32_t rowid = SPA.indSplitA[i];
            int32_t lrowid = rowid - rs * rowPerSplit;
            if(!SPA.V_isthereBool[rs][lrowid])// there is no conflict across threads
            {
                SPA.V_localy[0][rowid] = SPA.numSplitA[i];
                nzinds[tMergeDisp++] = rowid;
                SPA.V_isthereBool[rs][lrowid]=true;
            }
            else
            {
                SPA.V_localy[0][rowid] = SR::add(SPA.V_localy[0][rowid], SPA.numSplitA[i]);
            }
        }
        
        integerSort(nzinds + disp[rs], tMergeDisp - disp[rs]);
        nzInRowSplits[rs] = tMergeDisp - disp[rs];
        
    }
    
#ifdef BENCHMARK_SPMSPV
    t3 = MPI_Wtime() - t0;
#endif
    // prefix sum
    std::vector<uint32_t> dispRowSplits(rowSplits+1);
    dispRowSplits[0] = 0;
    for(int i=0; i<rowSplits; i++)
    {
        dispRowSplits[i+1] = dispRowSplits[i] + nzInRowSplits[i];
    }
    
#ifdef BENCHMARK_SPMSPV
    t0 = MPI_Wtime();
#endif
    int nnzy = dispRowSplits[rowSplits];
    indy.resize(nnzy);
    numy.resize(nnzy);
#ifdef BENCHMARK_SPMSPV
    tseq = MPI_Wtime() - t0;
    t0 = MPI_Wtime();
#endif
    
    int  maxNnzInSplit = *std::max_element(nzInRowSplits.begin(),nzInRowSplits.end());
    THREAD_BUF_LEN = std::min(maxNnzInSplit+1,256);
#ifdef _OPENMP
#pragma omp parallel
#endif
    {
        OVT* tnumy = new OVT [THREAD_BUF_LEN];
        int32_t* tindy = new int32_t [THREAD_BUF_LEN];
       	int curSize, tdisp;
#ifdef _OPENMP
#pragma omp for schedule(dynamic,1)
#endif
        for(int rs=0; rs<rowSplits; rs++)
        {
            curSize = 0;
            tdisp = 0;
            uint32_t * thisind = nzinds + disp[rs];
            std::copy(nzinds+disp[rs], nzinds+disp[rs]+nzInRowSplits[rs], indy.begin()+dispRowSplits[rs]);
            for(int j=0; j<nzInRowSplits[rs]; j++)
            {
                
                if ( curSize < THREAD_BUF_LEN)
                {
                    tnumy[curSize++] = SPA.V_localy[0][thisind[j]];
                }
                else
                {
                    std::copy(tnumy, tnumy+curSize, numy.begin()+dispRowSplits[rs]+tdisp);
                    tdisp += curSize;
                    tnumy[0] = SPA.V_localy[0][thisind[j]];
                    curSize = 1;
                }
            }
            if ( curSize > 0)
            {
                std::copy(tnumy, tnumy+curSize, numy.begin()+dispRowSplits[rs]+tdisp);
            }
        }
        delete [] tnumy;
        delete [] tindy;
    }
    
    
#ifdef BENCHMARK_SPMSPV
    t4 = MPI_Wtime() - t0;
#endif
    
    delete[] nzinds;
    
    
    
#ifdef BENCHMARK_SPMSPV
    double tall = MPI_Wtime() - tstart;
    std::ostringstream outs1;
    outs1 << "Time breakdown of SpMSpV-bucket." << std::endl;
    outs1 << "Estimate buckets: "<< t1 << " Bucketing: " << t2 << " SPA-merge: " << t3 << " Output: " << t4  << " Total: "<< tall << std::endl;
    SpParHelper::Print(outs1.str());
#endif
    
}

}