File: test_mpipspgemm.cpp

package info (click to toggle)
combblas 2.0.0-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 190,488 kB
  • sloc: cpp: 55,918; ansic: 25,134; sh: 3,691; makefile: 548; csh: 66; python: 49; perl: 21
file content (160 lines) | stat: -rw-r--r-- 4,749 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#include <mpi.h>
#include <sys/time.h>
#include <iostream>
#include <functional>
#include <algorithm>
#include <vector>
#include <string>
#include <sstream>
#include <stdint.h>
#include <cmath>
#include "CombBLAS/CombBLAS.h"
#include "Glue.h"
#include "CCGrid.h"
#include "Reductions.h"
#include "Multiplier.h"
#include "SplitMatDist.h"

using namespace std;
using namespace combblas;

double comm_bcast;
double comm_reduce;
double comp_summa;
double comp_reduce;
double comp_result;
double comp_reduce_layer;
double comp_split;
double comp_trans;
double comm_split;

#define ITERS 1

int main(int argc, char *argv[])
{
    int provided;
	//MPI_Init_thread(&argc, &argv, MPI_THREAD_SINGLE, &provided);
    
    
    MPI_Init_thread(&argc, &argv, MPI_THREAD_SERIALIZED, &provided);
    if (provided < MPI_THREAD_SERIALIZED)
    {
        printf("ERROR: The MPI library does not have MPI_THREAD_SERIALIZED support\n");
        MPI_Abort(MPI_COMM_WORLD, 1);
    }
    
    
    int nprocs, myrank;
    MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
    MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

	if(argc != 8)
	{
        cout << argc << endl;
		if(myrank == 0)
		{
            printf("Usage (input): ./mpipspgemm <GridRows> <GridCols> <Layers> <matA> <matB> <matC> <algo>\n");
            printf("Example: ./mpipspgemm 4 4 2 matA.mtx matB.mtx matB.mtx threaded\n");
            printf("algo: outer | column | threaded \n");
		}
		return -1;
	}

	unsigned GRROWS = (unsigned) atoi(argv[1]);
	unsigned GRCOLS = (unsigned) atoi(argv[2]);
	unsigned C_FACTOR = (unsigned) atoi(argv[3]);
    CCGrid CMG(C_FACTOR, GRCOLS);
    
    if(GRROWS != GRCOLS)
    {
        SpParHelper::Print("This version of the Combinatorial BLAS only works on a square logical processor grid\n");
        MPI_Barrier(MPI_COMM_WORLD);
        MPI_Abort(MPI_COMM_WORLD, 1);
    }
    
    int layer_length = GRROWS*GRCOLS;
    if(layer_length * C_FACTOR != nprocs)
    {
        SpParHelper::Print("The product of <GridRows> <GridCols> <Replicas> does not match the number of processes\n");
        MPI_Barrier(MPI_COMM_WORLD);
        MPI_Abort(MPI_COMM_WORLD, 1);
    }
    
	
    
    SpDCCols<int32_t, double> splitA, splitB, controlC;
    SpDCCols<int32_t, double> *splitC;
    string type;
    
    
    string fileA(argv[4]);
    string fileB(argv[5]);
    string fileC(argv[6]);
    
    {
        shared_ptr<CommGrid> layerGrid;
        layerGrid.reset( new CommGrid(CMG.layerWorld, 0, 0) );
        FullyDistVec<int32_t, int32_t> p(layerGrid); // permutation vector defined on layers
        
        double t01 = MPI_Wtime();
        
        SpDCCols<int32_t, double> *A = ReadMat<double>(fileA, CMG, true, p);
        SpDCCols<int32_t, double> *B = ReadMat<double>(fileB, CMG, true, p);
        SpDCCols<int32_t, double> *C = ReadMat<double>(fileC, CMG, true, p);
        
        SplitMat(CMG, A, splitA, false);
        SplitMat(CMG, B, splitB, true);
        SplitMat(CMG, C, controlC, false);
        
        if(myrank == 0) cout << "Matrices read and replicated along layers : time " << MPI_Wtime() - t01 << endl;

        type = string(argv[7]);
        
        if(type == string("outer"))
        {
            for(int k=0; k<ITERS; k++)
            {
                splitB.Transpose(); // locally "transpose" [ABAB: check correctness]
                splitC = multiply(splitA, splitB, CMG, true, false); // outer product
                if (controlC == *splitC)
                    SpParHelper::Print("Outer product multiplication working correctly\n");
                else
                    SpParHelper::Print("ERROR in Outer product multiplication, go fix it!\n");
                delete splitC;
            }
            
        }
        else if(type == string("column"))
        {
            
            for(int k=0; k<ITERS; k++)
            {
                splitC = multiply(splitA, splitB, CMG, false, false);
                if (controlC == *splitC)
                    SpParHelper::Print("Col-heap multiplication working correctly\n");
                else
                    SpParHelper::Print("ERROR in Col-heap multiplication, go fix it!\n");
                
                delete splitC;
            }
            
        }
        else // default threaded
        {
            for(int k=0; k<ITERS; k++)
            {
                splitC = multiply(splitA, splitB, CMG, false, true);
                if (controlC == *splitC)
                    SpParHelper::Print("Col-heap-threaded multiplication working correctly\n");
                else
                    SpParHelper::Print("ERROR in Col-heap-threaded multiplication, go fix it!\n");
                delete splitC;
            }
        }
    }

	MPI_Finalize();
	return 0;
}