1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
#include <mpi.h>
#include <sys/time.h>
#include <iostream>
#include <functional>
#include <algorithm>
#include <vector>
#include <sstream>
#include "CombBLAS/CombBLAS.h"
#include "CombBLAS/CommGrid3D.h"
#include "CombBLAS/SpParMat3D.h"
#include "CombBLAS/ParFriends.h"
using namespace std;
using namespace combblas;
#define EPS 0.0001
#ifdef TIMING
double cblas_alltoalltime;
double cblas_allgathertime;
#endif
#ifdef _OPENMP
int cblas_splits = omp_get_max_threads();
#else
int cblas_splits = 1;
#endif
// Simple helper class for declarations: Just the numerical type is templated
// The index type and the sequential matrix type stays the same for the whole code
// In this case, they are "int" and "SpDCCols"
template <class NT>
class PSpMat
{
public:
typedef SpDCCols < int64_t, NT > DCCols;
typedef SpParMat < int64_t, NT, DCCols > MPI_DCCols;
};
int main(int argc, char* argv[])
{
int nprocs, myrank;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
if(argc < 2){
if(myrank == 0)
{
cout << "Usage: ./<Binary> <MatrixA> " << endl;
}
MPI_Finalize();
return -1;
}
else {
string Aname(argv[1]);
shared_ptr<CommGrid> fullWorld;
fullWorld.reset( new CommGrid(MPI_COMM_WORLD, 0, 0) );
SpParMat<int64_t, double, SpDCCols < int64_t, double >> M(fullWorld);
typedef PlusTimesSRing<double, double> PTFF;
M.ParallelReadMM(Aname, true, maximum<double>());
FullyDistVec<int64_t, int64_t> p( M.getcommgrid() );
p.iota(M.getnrow(), 0);
p.RandPerm();
(M)(p,p,true);// in-place permute to save memory
//M.ReadGeneralizedTuples(Aname, maximum<double>());
SpParMat<int64_t, double, SpDCCols < int64_t, double >> A(M);
//SpParMat3D<int64_t, double, SpDCCols < int64_t, double >> A3D(A, 4, true, false);
SpParMat<int64_t, double, SpDCCols < int64_t, double >> B(M);
//SpParMat3D<int64_t, double, SpDCCols < int64_t, double >> B3D(B, 4, false, false);
typedef PlusTimesSRing<double, double> PTFF;
typedef int64_t IT;
typedef double NT;
typedef SpDCCols < int64_t, double > DER;
double Abcasttime = 0;
double Abcasttime_prev;
double Bbcasttime = 0;
double Bbcasttime_prev;
double t0, t1;
int dummy, stages;
std::shared_ptr<CommGrid> GridC = ProductGrid((A.getcommgrid()).get(), (B.getcommgrid()).get(), stages, dummy, dummy);
//int buffsize = 1024 * 1024 * (512 / sizeof(IT));
//if(myrank == 0) fprintf(stderr, "Memory to be allocated %d\n", buffsize);
//IT * sendbuf = new IT[buffsize];
//if(myrank == 0) fprintf(stderr, "Memory allocated\n");
for(int phases = 1; phases <= 256; phases = phases * 2){
if(myrank == 0) fprintf(stderr, "Running with phase: %d\n", phases);
for(int it = 0; it < 3; it++){
Abcasttime = 0;
Bbcasttime = 0;
std::vector< DER > PiecesOfB;
DER CopyB = *(B.seqptr()); // we allow alias matrices as input because of this local copy
CopyB.ColSplit(phases, PiecesOfB); // CopyB's memory is destroyed at this point
MPI_Barrier(GridC->GetWorld());
IT ** ARecvSizes = SpHelper::allocate2D<IT>(DER::esscount, stages);
IT ** BRecvSizes = SpHelper::allocate2D<IT>(DER::esscount, stages);
SpParHelper::GetSetSizes( *(A.seqptr()), ARecvSizes, (A.getcommgrid())->GetRowWorld());
// Remotely fetched matrices are stored as pointers
DER * ARecv;
DER * BRecv;
int Aself = (A.getcommgrid())->GetRankInProcRow();
int Bself = (B.getcommgrid())->GetRankInProcCol();
//int chunksize = buffsize / phases;
//if(myrank == 0) fprintf(stderr, "chunksize: %d\n", chunksize);
for(int p = 0; p < phases; ++p)
{
SpParHelper::GetSetSizes( PiecesOfB[p], BRecvSizes, (B.getcommgrid())->GetColWorld());
for(int i = 0; i < stages; ++i)
{
//t0 = MPI_Wtime();
//MPI_Bcast(sendbuf+(chunksize*p), chunksize, MPIType<IT>(), i, GridC->GetColWorld());
//t1 = MPI_Wtime();
//Bbcasttime += (t1-t0);
std::vector<IT> ess;
if(i == Aself) ARecv = A.seqptr(); // shallow-copy
else {
ess.resize(DER::esscount);
for(int j=0; j< DER::esscount; ++j)
ess[j] = ARecvSizes[j][i]; // essentials of the ith matrix in this row
ARecv = new DER(); // first, create the object
}
MPI_Barrier(A.getcommgrid()->GetWorld());
t0=MPI_Wtime();
//SpParHelper::BCastMatrix(GridC->GetRowWorld(), *ARecv, ess, i); // then, receive its elements
MPI_Barrier(A.getcommgrid()->GetWorld());
t1=MPI_Wtime();
Abcasttime += (t1-t0);
ess.clear();
if(i == Bself) BRecv = &(PiecesOfB[p]); // shallow-copy
else {
ess.resize(DER::esscount);
for(int j=0; j< DER::esscount; ++j)
ess[j] = BRecvSizes[j][i];
BRecv = new DER();
}
MPI_Barrier(A.getcommgrid()->GetWorld());
t0=MPI_Wtime();
SpParHelper::BCastMatrix(GridC->GetColWorld(), *BRecv, ess, i); // then, receive its elements
MPI_Barrier(A.getcommgrid()->GetWorld());
t1=MPI_Wtime();
Bbcasttime += (t1-t0);
//if(i != Aself){
//if(ARecv != NULL) delete ARecv;
//}
if(i != Bself) {
if(BRecv != NULL) delete BRecv;
}
} // all stages executed
}
SpHelper::deallocate2D(ARecvSizes, DER::esscount);
SpHelper::deallocate2D(BRecvSizes, DER::esscount);
if(myrank == 0){
fprintf(stderr, "Iteration : %d - Abcasttime: %lf\n", it, Abcasttime);
fprintf(stderr, "Iteration : %d - Bbcasttime: %lf\n", it, Bbcasttime);
}
}
if(myrank == 0) fprintf(stderr, "\n\n++++++++++++++++++++++++++++++++++++++++++++\n\n\n\n");
}
}
MPI_Finalize();
return 0;
}
|