1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
/****************************************************************/
/* Parallel Combinatorial BLAS Library (for Graph Computations) */
/* version 1.6 -------------------------------------------------*/
/* date: 6/15/2017 ---------------------------------------------*/
/* authors: Ariful Azad, Aydin Buluc --------------------------*/
/****************************************************************/
/*
Copyright (c) 2010-2017, The Regents of the University of California
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// These macros should be defined before stdint.h is included
#ifndef __STDC_CONSTANT_MACROS
#define __STDC_CONSTANT_MACROS
#endif
#ifndef __STDC_LIMIT_MACROS
#define __STDC_LIMIT_MACROS
#endif
#include <stdint.h>
#include <mpi.h>
#include <iostream>
#include <fstream>
#include <string>
#include <sstream> // Required for stringstreams
#include <ctime>
#include <cmath>
#include "CombBLAS/CombBLAS.h"
using namespace combblas;
using namespace std;
// Simple helper class for declarations: Just the numerical type is templated
// The index type and the sequential matrix type stays the same for the whole code
// In this case, they are "int" and "SpDCCols"
template <class NT>
class Dist
{
public:
typedef SpDCCols < int, NT > DCCols;
typedef SpParMat < int, NT, DCCols > MPI_DCCols;
};
int main(int argc, char* argv[])
{
int nprocs, myrank;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
typedef PlusTimesSRing<bool, int> PTBOOLINT;
typedef PlusTimesSRing<bool, double> PTBOOLDOUBLE;
if(argc < 4)
{
if(myrank == 0)
{
cout << "Usage: ./betwcent <BASEADDRESS> <K4APPROX> <BATCHSIZE> <output file - optional>" << endl;
cout << "Example: ./betwcent Data/ 15 128" << endl;
cout << "Input file input.mtx should be under <BASEADDRESS> in matrix market format" << endl;
cout << "<BATCHSIZE> should be a multiple of sqrt(p)" << endl;
cout << "Because <BATCHSIZE> is for the overall matrix (similarly, <K4APPROX> is global as well) " << endl;
}
MPI_Finalize();
return -1;
}
{
int K4Approx = atoi(argv[2]);
int batchSize = atoi(argv[3]);
string directory(argv[1]);
string ifilename = "input.mtx";
ifilename = directory+"/"+ifilename;
shared_ptr<CommGrid> fullWorld;
fullWorld.reset( new CommGrid(MPI_COMM_WORLD, 0, 0) );
Dist<bool>::MPI_DCCols A(fullWorld);
Dist<bool>::MPI_DCCols AT(fullWorld); // construct object
AT.ParallelReadMM(ifilename, true, maximum<double>()); // read it from file, note that we use the transpose of "input" data
A = AT;
A.Transpose();
int nPasses = (int) pow(2.0, K4Approx);
int numBatches = (int) ceil( static_cast<float>(nPasses)/ static_cast<float>(batchSize));
// get the number of batch vertices for submatrix
int subBatchSize = batchSize / (AT.getcommgrid())->GetGridCols();
int nBatchSize = subBatchSize * (AT.getcommgrid())->GetGridCols();
nPasses = numBatches * nBatchSize; // update the number of starting vertices
if(batchSize % (AT.getcommgrid())->GetGridCols() > 0 && myrank == 0)
{
cout << "*** Batchsize is not evenly divisible by the grid dimension ***" << endl;
cout << "*** Processing "<< nPasses <<" vertices instead"<< endl;
}
A.PrintInfo();
ostringstream tinfo;
tinfo << "Batch processing will occur " << numBatches << " times, each processing " << nBatchSize << " vertices (overall)" << endl;
SpParHelper::Print(tinfo.str());
vector<int> candidates;
// Only consider non-isolated vertices
int vertices = 0;
int vrtxid = 0;
int nlocpass = numBatches * subBatchSize;
while(vertices < nlocpass)
{
vector<int> single;
vector<int> empty;
single.push_back(vrtxid); // will return ERROR if vrtxid > N (the column dimension)
int locnnz = ((AT.seq())(empty,single)).getnnz();
int totnnz;
MPI_Allreduce( &locnnz, &totnnz, 1, MPI_INT, MPI_SUM, (AT.getcommgrid())->GetColWorld());
if(totnnz > 0)
{
candidates.push_back(vrtxid);
++vertices;
}
++vrtxid;
}
SpParHelper::Print("Candidates chosen, precomputation finished\n");
double t1 = MPI_Wtime();
vector<int> batch(subBatchSize);
FullyDistVec<int, double> bc(AT.getcommgrid(), A.getnrow(), 0.0);
for(int i=0; i< numBatches; ++i)
{
for(int j=0; j< subBatchSize; ++j)
{
batch[j] = candidates[i*subBatchSize + j];
}
Dist<int>::MPI_DCCols fringe = AT.SubsRefCol(batch);
// Create nsp by setting (r,i)=1 for the ith root vertex with label r
// Inially only the diagonal processors have any nonzeros (because we chose roots so)
Dist<int>::DCCols * nsploc = new Dist<int>::DCCols();
tuple<int, int, int> * mytuples = NULL;
if(AT.getcommgrid()->GetRankInProcRow() == AT.getcommgrid()->GetRankInProcCol())
{
mytuples = new tuple<int, int, int>[subBatchSize];
for(int k =0; k<subBatchSize; ++k)
{
mytuples[k] = make_tuple(batch[k], k, 1);
}
nsploc->Create( subBatchSize, AT.getlocalrows(), subBatchSize, mytuples);
}
else
{
nsploc->Create( 0, AT.getlocalrows(), subBatchSize, mytuples);
}
Dist<int>::MPI_DCCols nsp(nsploc, AT.getcommgrid());
vector < Dist<bool>::MPI_DCCols * > bfs; // internally keeps track of depth
SpParHelper::Print("Exploring via BFS...\n");
while( fringe.getnnz() > 0 )
{
nsp += fringe;
Dist<bool>::MPI_DCCols * level = new Dist<bool>::MPI_DCCols( fringe );
bfs.push_back(level);
fringe = PSpGEMM<PTBOOLINT>(AT, fringe);
fringe = EWiseMult(fringe, nsp, true);
}
// Apply the unary function 1/x to every element in the matrix
// 1/x works because no explicit zeros are stored in the sparse matrix nsp
Dist<double>::MPI_DCCols nspInv = nsp;
nspInv.Apply(bind1st(divides<double>(), 1));
// create a dense matrix with all 1's
DenseParMat<int, double> bcu(1.0, AT.getcommgrid(), fringe.getlocalrows(), fringe.getlocalcols() );
SpParHelper::Print("Tallying...\n");
// BC update for all vertices except the sources
for(int j = bfs.size()-1; j > 0; --j)
{
Dist<double>::MPI_DCCols w = EWiseMult( *bfs[j], nspInv, false);
w.EWiseScale(bcu);
Dist<double>::MPI_DCCols product = PSpGEMM<PTBOOLDOUBLE>(A,w);
product = EWiseMult(product, *bfs[j-1], false);
product = EWiseMult(product, nsp, false);
bcu += product;
}
for(int j=0; j < bfs.size(); ++j)
{
delete bfs[j];
}
SpParHelper::Print("Adding bc contributions...\n");
bc += FullyDistVec<int, double>(bcu.Reduce(Row, plus<double>(), 0.0)); // pack along rows
}
bc.Apply(bind2nd(minus<double>(), nPasses)); // Subtrack nPasses from all the bc scores (because bcu was initialized to all 1's)
double t2=MPI_Wtime();
double TEPS = (nPasses * static_cast<float>(A.getnnz())) / (t2-t1);
if( myrank == 0)
{
cout<<"Computation finished"<<endl;
fprintf(stdout, "%.6lf seconds elapsed for %d starting vertices\n", t2-t1, nPasses);
fprintf(stdout, "TEPS score is: %.6lf\n", TEPS);
}
ofstream output(argv[4]);
bc.SaveGathered(output, 0);
output.close();
}
// make sure the destructors for all objects are called before MPI::Finalize()
MPI_Finalize();
return 0;
}
|