1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
|
#ifdef THREADED
#ifndef _OPENMP
#define _OPENMP
#endif
#include <omp.h>
int cblas_splits = 1;
#endif
#include "CombBLAS/CombBLAS.h"
#include <mpi.h>
#include <sys/time.h>
#include <iostream>
#include <functional>
#include <algorithm>
#include <vector>
#include <string>
#include <sstream>
#include "BPMaximalMatching.h"
#include "BPMaximumMatching.h"
using namespace std;
using namespace combblas;
typedef SpParMat < int64_t, bool, SpDCCols<int64_t,bool> > Par_DCSC_Bool;
typedef SpParMat < int64_t, int64_t, SpDCCols<int64_t, int64_t> > Par_DCSC_int64_t;
typedef SpParMat < int64_t, double, SpDCCols<int64_t, double> > Par_DCSC_Double;
typedef SpParMat < int64_t, bool, SpCCols<int64_t,bool> > Par_CSC_Bool;
// algorithmic options
bool prune, randMM, moreSplit;
int init;
bool randMaximal;
bool fewexp;
bool randPerm;
bool saveMatching;
string ofname;
/*
Remove isolated vertices and purmute
*/
void removeIsolated(Par_DCSC_Bool & A)
{
int nprocs, myrank;
MPI_Comm comm = A.getcommgrid()->GetWorld();
MPI_Comm_size(comm,&nprocs);
MPI_Comm_rank(comm,&myrank);
FullyDistVec<int64_t, int64_t> * ColSums = new FullyDistVec<int64_t, int64_t>(A.getcommgrid());
FullyDistVec<int64_t, int64_t> * RowSums = new FullyDistVec<int64_t, int64_t>(A.getcommgrid());
FullyDistVec<int64_t, int64_t> nonisoRowV; // id's of non-isolated (connected) Row vertices
FullyDistVec<int64_t, int64_t> nonisoColV; // id's of non-isolated (connected) Col vertices
FullyDistVec<int64_t, int64_t> nonisov; // id's of non-isolated (connected) vertices
A.Reduce(*ColSums, Column, plus<int64_t>(), static_cast<int64_t>(0));
A.Reduce(*RowSums, Row, plus<int64_t>(), static_cast<int64_t>(0));
// this steps for general graph
/*
ColSums->EWiseApply(*RowSums, plus<int64_t>()); not needed for bipartite graph
nonisov = ColSums->FindInds(bind2nd(greater<int64_t>(), 0));
nonisov.RandPerm(); // so that A(v,v) is load-balanced (both memory and time wise)
A.operator()(nonisov, nonisov, true); // in-place permute to save memory
*/
// this steps for bipartite graph
nonisoColV = ColSums->FindInds(bind2nd(greater<int64_t>(), 0));
nonisoRowV = RowSums->FindInds(bind2nd(greater<int64_t>(), 0));
delete ColSums;
delete RowSums;
{
nonisoColV.RandPerm();
nonisoRowV.RandPerm();
}
int64_t nrows1=A.getnrow(), ncols1=A.getncol(), nnz1 = A.getnnz();
double avgDeg1 = (double) nnz1/(nrows1+ncols1);
A.operator()(nonisoRowV, nonisoColV, true);
int64_t nrows2=A.getnrow(), ncols2=A.getncol(), nnz2 = A.getnnz();
double avgDeg2 = (double) nnz2/(nrows2+ncols2);
if(myrank == 0)
{
cout << "ncol nrows nedges deg \n";
cout << nrows1 << " " << ncols1 << " " << nnz1 << " " << avgDeg1 << " \n";
cout << nrows2 << " " << ncols2 << " " << nnz2 << " " << avgDeg2 << " \n";
}
MPI_Barrier(comm);
}
void ShowUsage()
{
int myrank;
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
if(myrank == 0)
{
cout << "\n-------------- usage --------------\n";
cout << "Usage (random matrix): ./bpmm <er|g500|ssca> <Scale> <EDGEFACTOR> <init><diropt><prune><graft>\n";
cout << "Usage (input matrix): ./bpmm <input> <matrix> <init><diropt><prune><graft>\n\n";
cout << " \n-------------- meaning of arguments ----------\n";
cout << "** er: Erdos-Renyi, g500: Graph500 benchmark, ssca: SSCA benchmark\n";
cout << "** scale: matrix dimention is 2^scale\n";
cout << "** edgefactor: average degree of vertices\n";
cout << "** (optional) init : maximal matching algorithm used to initialize\n ";
cout << " none: noinit, greedy: greedy init , ks: Karp-Sipser, dmd: dynamic mindegree\n";
cout << " default: none\n";
cout << "** (optional) randMaximal: random parent selection in greedy/Karp-Sipser\n" ;
//cout << "** (optional) diropt: employ direction-optimized BFS\n" ;
cout << "** (optional) prune: discard trees as soon as an augmenting path is found\n" ;
//cout << "** (optional) graft: employ tree grafting\n" ;
cout << "** (optional) moreSplit: more splitting of Matrix.\n" ;
cout << "** (optional) randPerm: Randomly permute the matrix for load balance.\n" ;
cout << "** (optional) saveMatching: Save the matching vector in a file (filename: inputfile_matching.txt).\n" ;
cout << "(order of optional arguments does not matter)\n";
cout << " \n-------------- examples ----------\n";
cout << "Example: mpirun -np 4 ./bpmm g500 18 16" << endl;
cout << "Example: mpirun -np 4 ./bpmm g500 18 16 ks diropt graft" << endl;
cout << "Example: mpirun -np 4 ./bpmm input cage12.mtx randPerm ks diropt graft\n" << endl;
}
}
void GetOptions(char* argv[], int argc)
{
string allArg="";
for(int i=0; i<argc; i++)
{
allArg += string(argv[i]);
}
if(allArg.find("prune")!=string::npos)
prune = true;
if(allArg.find("fewexp")!=string::npos)
fewexp = true;
if(allArg.find("moreSplit")!=string::npos)
moreSplit = true;
if(allArg.find("saveMatching")!=string::npos)
saveMatching=true;
if(allArg.find("randMM")!=string::npos)
randMM = true;
if(allArg.find("randMaximal")!=string::npos)
randMaximal = true;
if(allArg.find("randPerm")!=string::npos)
randPerm = true;
if(allArg.find("greedy")!=string::npos)
init = GREEDY;
else if(allArg.find("ks")!=string::npos)
init = KARP_SIPSER;
else if(allArg.find("dmd")!=string::npos)
init = DMD;
else
init = NO_INIT;
}
void showCurOptions()
{
ostringstream tinfo;
tinfo.str("");
tinfo << "\n---------------------------------\n";
tinfo << "Calling maximum-cardinality matching with options: " << endl;
tinfo << " init: ";
if(init == NO_INIT) tinfo << " no-init ";
if(init == KARP_SIPSER) tinfo << " Karp-Sipser, ";
if(init == DMD) tinfo << " dynamic mindegree, ";
if(init == GREEDY) tinfo << " greedy, ";
if(randMaximal) tinfo << " random parent selection in greedy/Karp-Sipser, ";
if(prune) tinfo << " tree pruning, ";
if(moreSplit) tinfo << " moreSplit ";
if(randPerm) tinfo << " Randomly permute the matrix for load balance ";
if(saveMatching) tinfo << " Write the matcing in a file";
tinfo << "\n---------------------------------\n\n";
SpParHelper::Print(tinfo.str());
}
void experiment(Par_DCSC_Bool & A, Par_DCSC_Bool & AT, FullyDistVec<int64_t, int64_t> degCol)
{
FullyDistVec<int64_t, int64_t> mateRow2Col ( A.getcommgrid(), A.getnrow(), (int64_t) -1);
FullyDistVec<int64_t, int64_t> mateCol2Row ( A.getcommgrid(), A.getncol(), (int64_t) -1);
// best option
init = DMD; randMaximal = false; randMM = true; prune = true;
showCurOptions();
MaximalMatching(A, AT, mateRow2Col, mateCol2Row, degCol, init, randMaximal);
maximumMatching(A, mateRow2Col, mateCol2Row,prune, randMM);
mateRow2Col.Apply([](int64_t val){return (int64_t) -1;});
mateCol2Row.Apply([](int64_t val){return (int64_t) -1;});
// best option + KS
init = KARP_SIPSER; randMaximal = true; randMM = true; prune = true;
showCurOptions();
MaximalMatching(A, AT, mateRow2Col, mateCol2Row, degCol, init, randMaximal);
maximumMatching(A, mateRow2Col, mateCol2Row, prune, randMM);
mateRow2Col.Apply([](int64_t val){return (int64_t) -1;});
mateCol2Row.Apply([](int64_t val){return (int64_t) -1;});
// best option + Greedy
init = GREEDY; randMaximal = true; randMM = true; prune = true;
showCurOptions();
MaximalMatching(A, AT, mateRow2Col, mateCol2Row, degCol, init, randMaximal);
maximumMatching(A, mateRow2Col, mateCol2Row, prune, randMM);
mateRow2Col.Apply([](int64_t val){return (int64_t) -1;});
mateCol2Row.Apply([](int64_t val){return (int64_t) -1;});
// best option + No init
init = NO_INIT; randMaximal = false; randMM = true; prune = true;
showCurOptions();
maximumMatching(A, mateRow2Col, mateCol2Row, prune, randMM);
mateRow2Col.Apply([](int64_t val){return (int64_t) -1;});
mateCol2Row.Apply([](int64_t val){return (int64_t) -1;});
// best option - randMM
init = DMD; randMaximal = false; randMM = false; prune = true;
showCurOptions();
MaximalMatching(A, AT, mateRow2Col, mateCol2Row, degCol, init, randMaximal);
maximumMatching(A, mateRow2Col, mateCol2Row, prune, randMM);
mateRow2Col.Apply([](int64_t val){return (int64_t) -1;});
mateCol2Row.Apply([](int64_t val){return (int64_t) -1;});
// best option - prune
init = DMD; randMaximal = false; randMM = true; prune = false;
showCurOptions();
MaximalMatching(A, AT, mateRow2Col, mateCol2Row, degCol, init, randMaximal);
maximumMatching(A, mateRow2Col, mateCol2Row, prune, randMM);
mateRow2Col.Apply([](int64_t val){return (int64_t) -1;});
mateCol2Row.Apply([](int64_t val){return (int64_t) -1;});
}
// default experiment
void defaultExp(Par_DCSC_Bool & A, Par_DCSC_Bool & AT, FullyDistVec<int64_t, int64_t> degCol)
{
FullyDistVec<int64_t, int64_t> mateRow2Col ( A.getcommgrid(), A.getnrow(), (int64_t) -1);
FullyDistVec<int64_t, int64_t> mateCol2Row ( A.getcommgrid(), A.getncol(), (int64_t) -1);
// best option
init = DMD; randMaximal = false; randMM = true; prune = true;
showCurOptions();
MaximalMatching(A, AT, mateRow2Col, mateCol2Row, degCol, init, randMaximal);
maximumMatching(A, mateRow2Col, mateCol2Row, prune, randMM);
if(saveMatching && ofname!="")
{
mateRow2Col.ParallelWrite(ofname,false,false);
}
mateRow2Col.Apply([](int64_t val){return (int64_t) -1;});
mateCol2Row.Apply([](int64_t val){return (int64_t) -1;});
}
void experiment_maximal(Par_DCSC_Bool & A, Par_DCSC_Bool & AT, FullyDistVec<int64_t, int64_t> degCol)
{
int nprocs, myrank;
MPI_Comm comm = A.getcommgrid()->GetWorld();
MPI_Comm_size(comm,&nprocs);
MPI_Comm_rank(comm,&myrank);
FullyDistVec<int64_t, int64_t> mateRow2Col ( A.getcommgrid(), A.getnrow(), (int64_t) -1);
FullyDistVec<int64_t, int64_t> mateCol2Row ( A.getcommgrid(), A.getncol(), (int64_t) -1);
double time_start;
// best option
init = DMD; randMaximal = false; randMM = true; prune = true;
time_start=MPI_Wtime();
MaximalMatching(A, AT, mateRow2Col, mateCol2Row, degCol, init, randMaximal);
double time_dmd = MPI_Wtime()-time_start;
int64_t cardDMD = mateRow2Col.Count([](int64_t mate){return mate!=-1;});
time_start=MPI_Wtime();
maximumMatching(A, mateRow2Col, mateCol2Row, prune, randMM);
double time_mm_dmd = MPI_Wtime()-time_start;
int64_t mmcardDMD = mateRow2Col.Count([](int64_t mate){return mate!=-1;});
mateRow2Col.Apply([](int64_t val){return (int64_t) -1;});
mateCol2Row.Apply([](int64_t val){return (int64_t) -1;});
// best option + KS
init = KARP_SIPSER; randMaximal = true; randMM = true; prune = true;
time_start=MPI_Wtime();
MaximalMatching(A, AT, mateRow2Col, mateCol2Row, degCol, init, randMaximal);
double time_ks = MPI_Wtime()-time_start;
int64_t cardKS = mateRow2Col.Count([](int64_t mate){return mate!=-1;});
time_start=MPI_Wtime();
maximumMatching(A, mateRow2Col, mateCol2Row, prune, randMM);
double time_mm_ks = MPI_Wtime()-time_start;
int64_t mmcardKS = mateRow2Col.Count([](int64_t mate){return mate!=-1;});
mateRow2Col.Apply([](int64_t val){return (int64_t) -1;});
mateCol2Row.Apply([](int64_t val){return (int64_t) -1;});
// best option + Greedy
init = GREEDY; randMaximal = true; randMM = true; prune = true;
time_start=MPI_Wtime();
MaximalMatching(A, AT, mateRow2Col, mateCol2Row, degCol, init, randMaximal);
double time_greedy = MPI_Wtime()-time_start;
int64_t cardGreedy = mateRow2Col.Count([](int64_t mate){return mate!=-1;});
time_start=MPI_Wtime();
maximumMatching(A, mateRow2Col, mateCol2Row, prune, randMM);
double time_mm_greedy = MPI_Wtime()-time_start;
int64_t mmcardGreedy = mateRow2Col.Count([](int64_t mate){return mate!=-1;});
mateRow2Col.Apply([](int64_t val){return (int64_t) -1;});
mateCol2Row.Apply([](int64_t val){return (int64_t) -1;});
if(myrank == 0)
{
cout << "\n maximal matching experiment \n";
cout << cardGreedy << " " << mmcardGreedy << " " << time_greedy << " " << time_mm_greedy << " " << cardKS << " " << mmcardKS << " " << time_ks << " " << time_mm_ks << " " << cardDMD << " " << mmcardDMD << " " << time_dmd << " " << time_mm_dmd << " \n";
}
}
int main(int argc, char* argv[])
{
// ------------ initialize MPI ---------------
int provided;
MPI_Init_thread(&argc, &argv, MPI_THREAD_SERIALIZED, &provided);
if (provided < MPI_THREAD_SERIALIZED)
{
printf("ERROR: The MPI library does not have MPI_THREAD_SERIALIZED support\n");
MPI_Abort(MPI_COMM_WORLD, 1);
}
int nprocs, myrank;
MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
if(argc < 3)
{
ShowUsage();
MPI_Finalize();
return -1;
}
init = DMD;
randMaximal = false;
prune = false;
randMM = true;
moreSplit = false;
fewexp=false;
saveMatching = false;
ofname = "";
randPerm = false;
SpParHelper::Print("***** I/O and other preprocessing steps *****\n");
// ------------ Process input arguments and build matrix ---------------
{
Par_DCSC_Bool * ABool;
ostringstream tinfo;
double t01, t02;
if(string(argv[1]) == string("input")) // input option
{
ABool = new Par_DCSC_Bool();
string filename(argv[2]);
tinfo.str("");
tinfo << "\n**** Reading input matrix: " << filename << " ******* " << endl;
SpParHelper::Print(tinfo.str());
t01 = MPI_Wtime();
ABool->ParallelReadMM(filename, true, maximum<bool>()); // one-based matrix market file
t02 = MPI_Wtime();
ABool->PrintInfo();
tinfo.str("");
tinfo << "Reader took " << t02-t01 << " seconds" << endl;
SpParHelper::Print(tinfo.str());
GetOptions(argv+3, argc-3);
if(saveMatching)
{
ofname = filename + ".matching.out";
}
}
else if(argc < 4)
{
ShowUsage();
MPI_Finalize();
return -1;
}
else
{
unsigned scale = (unsigned) atoi(argv[2]);
unsigned EDGEFACTOR = (unsigned) atoi(argv[3]);
double initiator[4];
if(string(argv[1]) == string("er"))
{
initiator[0] = .25;
initiator[1] = .25;
initiator[2] = .25;
initiator[3] = .25;
if(myrank==0)
cout << "Randomly generated ER matric\n";
}
else if(string(argv[1]) == string("g500"))
{
initiator[0] = .57;
initiator[1] = .19;
initiator[2] = .19;
initiator[3] = .05;
if(myrank==0)
cout << "Randomly generated G500 matric\n";
}
else if(string(argv[1]) == string("ssca"))
{
initiator[0] = .6;
initiator[1] = .4/3;
initiator[2] = .4/3;
initiator[3] = .4/3;
if(myrank==0)
cout << "Randomly generated SSCA matric\n";
}
else
{
if(myrank == 0)
printf("The input type - %s - is not recognized.\n", argv[2]);
MPI_Abort(MPI_COMM_WORLD, 1);
}
SpParHelper::Print("Generating input matrix....\n");
t01 = MPI_Wtime();
DistEdgeList<int64_t> * DEL = new DistEdgeList<int64_t>();
DEL->GenGraph500Data(initiator, scale, EDGEFACTOR, true, true);
ABool = new Par_DCSC_Bool(*DEL, false);
delete DEL;
t02 = MPI_Wtime();
ABool->PrintInfo();
tinfo.str("");
tinfo << "Generator took " << t02-t01 << " seconds" << endl;
SpParHelper::Print(tinfo.str());
Symmetricize(*ABool);
//removeIsolated(*ABool);
SpParHelper::Print("Generated matrix symmetricized....\n");
ABool->PrintInfo();
GetOptions(argv+4, argc-4);
}
if(randPerm)
{
// randomly permute for load balance
SpParHelper::Print("Performing random permutation of matrix.\n");
FullyDistVec<int64_t, int64_t> prow(ABool->getcommgrid());
FullyDistVec<int64_t, int64_t> pcol(ABool->getcommgrid());
prow.iota(ABool->getnrow(), 0);
pcol.iota(ABool->getncol(), 0);
prow.RandPerm();
pcol.RandPerm();
(*ABool)(prow, pcol, true);
SpParHelper::Print("Performed random permutation of matrix.\n");
}
Par_DCSC_Bool A = *ABool;
Par_DCSC_Bool AT = A;
AT.Transpose();
// Reduce is not multithreaded, so I am doing it here
FullyDistVec<int64_t, int64_t> degCol(A.getcommgrid());
A.Reduce(degCol, Column, plus<int64_t>(), static_cast<int64_t>(0));
// TODO: Follow the AWPM guideline to use CSC matrices.
// Currently this file does not use multithreading in SpMSpV
/*
int nthreads;
#ifdef THREADED
#pragma omp parallel
{
int splitPerThread = 1;
if(moreSplit) splitPerThread = 4;
nthreads = omp_get_num_threads();
cblas_splits = nthreads*splitPerThread;
}
tinfo.str("");
tinfo << "Threading activated with " << nthreads << " threads, and matrix split into "<< cblas_splits << " parts" << endl;
SpParHelper::Print(tinfo.str());
//A.ActivateThreading(cblas_splits); // note: crash on empty matrix
//AT.ActivateThreading(cblas_splits);
#endif
*/
SpParHelper::Print("**************************************************\n\n");
defaultExp(A, AT, degCol);
}
MPI_Finalize();
return 0;
}
|