File: DirOptBFS.cpp

package info (click to toggle)
combblas 2.0.0-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 190,488 kB
  • sloc: cpp: 55,918; ansic: 25,134; sh: 3,691; makefile: 548; csh: 66; python: 49; perl: 21
file content (631 lines) | stat: -rw-r--r-- 26,352 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
/****************************************************************/
/* Parallel Combinatorial BLAS Library (for Graph Computations) */
/* version 1.6 -------------------------------------------------*/
/* date: 6/15/2017 ---------------------------------------------*/
/* authors: Ariful Azad, Aydin Buluc  --------------------------*/
/****************************************************************/
/*
 Copyright (c) 2010-2017, The Regents of the University of California
 
 Permission is hereby granted, free of charge, to any person obtaining a copy
 of this software and associated documentation files (the "Software"), to deal
 in the Software without restriction, including without limitation the rights
 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 copies of the Software, and to permit persons to whom the Software is
 furnished to do so, subject to the following conditions:
 
 The above copyright notice and this permission notice shall be included in
 all copies or substantial portions of the Software.
 
 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 THE SOFTWARE.
 */


#define DETERMINISTIC
#define BOTTOMUPTIME
#include <mpi.h>
#include <sys/time.h> 
#include <iostream>
#include <iomanip>
#include <functional>
#include <algorithm>
#include <vector>
#include <string>
#include <sstream>
#ifdef THREADED
	#ifndef _OPENMP
	#define _OPENMP
	#endif
	#include <omp.h>
#endif

// These macros should be defined before stdint.h is included
#ifndef __STDC_CONSTANT_MACROS
#define __STDC_CONSTANT_MACROS
#endif
#ifndef __STDC_LIMIT_MACROS
#define __STDC_LIMIT_MACROS
#endif
#include <stdint.h>

double cblas_alltoalltime;
double cblas_allgathertime;
double cblas_mergeconttime;
double cblas_transvectime;
double cblas_localspmvtime;
double cblas_ewisemulttime;

double bottomup_sendrecv;
double bottomup_allgather;
double bottomup_total;
double bottomup_convert;

double bu_local;
double bu_update;
double bu_rotate;
int cblas_splits;


#include "CombBLAS/CombBLAS.h"

using namespace combblas;
using namespace std;

#define ITERS 64
#define EDGEFACTOR 16

// 64-bit floor(log2(x)) function 
// note: least significant bit is the "zeroth" bit
// pre: v > 0
unsigned int highestbitset(uint64_t v)
{
	// b in binary is {10,1100, 11110000, 1111111100000000 ...}  
	const uint64_t b[] = {0x2ULL, 0xCULL, 0xF0ULL, 0xFF00ULL, 0xFFFF0000ULL, 0xFFFFFFFF00000000ULL};
	const unsigned int S[] = {1, 2, 4, 8, 16, 32};
	int i;

	unsigned int r = 0; // result of log2(v) will go here
	for (i = 5; i >= 0; i--) 
	{
		if (v & b[i])	// highestbitset is on the left half (i.e. v > S[i] for sure)
		{
			v >>= S[i];
			r |= S[i];
		} 
	}
	return r;
}

template <class T>
bool from_string(T & t, const string& s, ios_base& (*f)(ios_base&))
{
        istringstream iss(s);
        return !(iss >> f >> t).fail();
}


template <typename PARMAT>
void Symmetricize(PARMAT & A)
{
	// boolean addition is practically a "logical or"
	// therefore this doesn't destruct any links
	PARMAT AT = A;
	AT.Transpose();
	A += AT;
}

/**
 * Binary function to prune the previously discovered vertices from the current frontier 
 * When used with EWiseApply(SparseVec V, DenseVec W,...) we get the 'exclude = false' effect of EWiseMult
**/
struct prunediscovered: public binary_function<int64_t, int64_t, int64_t >
{
  	int64_t operator()(int64_t x, const int64_t & y) const
	{
		return ( y == -1 ) ? x: -1;
	}
};

int main(int argc, char* argv[])
{
#ifdef THREADED
    cblas_splits = omp_get_max_threads(); 
#else
    cblas_splits = 1;
#endif


    int nprocs, myrank;
#ifdef _OPENMP
    int provided, flag, claimed;
    MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED, &provided );
    MPI_Is_thread_main( &flag );
    if (!flag)
        SpParHelper::Print("This thread called init_thread but Is_thread_main gave false\n");
    MPI_Query_thread( &claimed );
    if (claimed != provided)
        SpParHelper::Print("Query thread gave different thread level than requested\n");
#else
	MPI_Init(&argc, &argv);
#endif
    
	MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
	MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
	if(argc < 2)
	{
		if(myrank == 0)
		{
			cout << "Usage: ./dobfs <Scale>" << endl;
			cout << "Example: ./dobfs 25" << endl;
		}
		MPI_Finalize();
		return -1;
	}	
	{
		typedef SpParMat < int64_t, bool, SpDCCols<int64_t,bool> > PSpMat_Bool;
		typedef SpParMat < int64_t, bool, SpDCCols<int32_t,bool> > PSpMat_s32p64;	// sequentially use 32-bits for local matrices, but parallel semantics are 64-bits
		typedef SpParMat < int64_t, int, SpDCCols<int32_t,int> > PSpMat_s32p64_Int;	// similarly mixed, but holds integers as upposed to booleans

		// Declare objects
		PSpMat_Bool A;	
		PSpMat_s32p64 Aeff;
		PSpMat_s32p64 ALocalT;
		shared_ptr<CommGrid> fullWorld;
		fullWorld.reset( new CommGrid(MPI_COMM_WORLD, 0, 0) );
		FullyDistVec<int64_t, int64_t> degrees(fullWorld);	// degrees of vertices (including multi-edges and self-loops)
		FullyDistVec<int64_t, int64_t> nonisov(fullWorld);	// id's of non-isolated (connected) vertices
		unsigned scale;
		OptBuf<int32_t, int64_t> optbuf;	// let indices be 32-bits

		scale = static_cast<unsigned>(atoi(argv[1]));
		ostringstream outs;
		outs << "Forcing scale to : " << scale << endl;
		SpParHelper::Print(outs.str());

		SpParHelper::Print("Using fast vertex permutations; skipping edge permutations (like v2.1)\n");	
		
		// this is an undirected graph, so A*x does indeed BFS
		double initiator[4] = {.57, .19, .19, .05};

		double t01 = MPI_Wtime();
		double t02;
		DistEdgeList<int64_t> * DEL = new DistEdgeList<int64_t>();
		DEL->GenGraph500Data(initiator, scale, EDGEFACTOR, true, true );	// generate packed edges
		SpParHelper::Print("Generated renamed edge lists\n");
		t02 = MPI_Wtime();
		ostringstream tinfo;
		tinfo << "Generation took " << t02-t01 << " seconds" << endl;
		SpParHelper::Print(tinfo.str());
	

		// Start Kernel #1
		MPI_Barrier(MPI_COMM_WORLD);
		double t1 = MPI_Wtime();

		// conversion from distributed edge list, keeps self-loops, sums duplicates
		PSpMat_s32p64_Int * G = new PSpMat_s32p64_Int(*DEL, false); 
		delete DEL;	// free memory before symmetricizing
		SpParHelper::Print("Created Sparse Matrix (with int32 local indices and values)\n");

		MPI_Barrier(MPI_COMM_WORLD);
		double redts = MPI_Wtime();
		G->Reduce(degrees, Row, plus<int64_t>(), static_cast<int64_t>(0));	// Identity is 0 
		MPI_Barrier(MPI_COMM_WORLD);
		double redtf = MPI_Wtime();

		ostringstream redtimeinfo;
		redtimeinfo << "Calculated degrees in " << redtf-redts << " seconds" << endl;
		SpParHelper::Print(redtimeinfo.str());
		A =  PSpMat_Bool(*G);			// Convert to Boolean
		delete G;
		int64_t removed  = A.RemoveLoops();

		ostringstream loopinfo;
		loopinfo << "Converted to Boolean and removed " << removed << " loops" << endl;
		SpParHelper::Print(loopinfo.str());
		A.PrintInfo();

		FullyDistVec<int64_t, int64_t> * ColSums = new FullyDistVec<int64_t, int64_t>(A.getcommgrid());
		FullyDistVec<int64_t, int64_t> * RowSums = new FullyDistVec<int64_t, int64_t>(A.getcommgrid());
		A.Reduce(*ColSums, Column, plus<int64_t>(), static_cast<int64_t>(0)); 	
		A.Reduce(*RowSums, Row, plus<int64_t>(), static_cast<int64_t>(0)); 	
		SpParHelper::Print("Reductions done\n");
		ColSums->EWiseApply(*RowSums, plus<int64_t>());
		SpParHelper::Print("Intersection of colsums and rowsums found\n");
		delete RowSums;

		nonisov = ColSums->FindInds(bind2nd(greater<int64_t>(), 0));	// only the indices of non-isolated vertices
		delete ColSums;

		nonisov.RandPerm();	// so that A(v,v) is load-balanced (both memory and time wise)
		SpParHelper::Print("Found non-isolated vertices\n");	
		A.PrintInfo();
		
#ifndef NOPERMUTE
		A(nonisov, nonisov, true);	// in-place permute to save memory	
		SpParHelper::Print("Dropped isolated vertices from input\n");	
		A.PrintInfo();
#endif

		Aeff = PSpMat_s32p64(A);	// Convert to 32-bit local integers
		A.FreeMemory();
		SpParHelper::Print("Converted to 32-bit integers\n");	
		
		Symmetricize(Aeff);	// A += A';
		SpParHelper::Print("Symmetricized\n");	
		
		Aeff.OptimizeForGraph500(optbuf);		// Should be called before threading is activated
		ALocalT = PSpMat_s32p64(Aeff.seq().TransposeConstPtr(), Aeff.getcommgrid());	// this should be copied before the threading is activated
	#ifdef THREADED
		tinfo << "Threading activated with " << cblas_splits << " threads" << endl;
		SpParHelper::Print(tinfo.str());
		Aeff.ActivateThreading(cblas_splits);	
	#endif
		Aeff.PrintInfo();
			
		MPI_Barrier(MPI_COMM_WORLD);
		double t2=MPI_Wtime();
			
		ostringstream k1timeinfo;
		k1timeinfo << (t2-t1) - (redtf-redts) << " seconds elapsed for Kernel #1" << endl;
		SpParHelper::Print(k1timeinfo.str());

		Aeff.PrintInfo();
		float balance = Aeff.LoadImbalance();
		ostringstream lbout;
		lbout << "Load balance: " << balance << endl;
		SpParHelper::Print(lbout.str());

		MPI_Barrier(MPI_COMM_WORLD);
		t1 = MPI_Wtime();

		// Now that every remaining vertex is non-isolated, randomly pick ITERS many of them as starting vertices
	#ifndef NOPERMUTE
		degrees = degrees(nonisov);	// fix the degrees array too
		degrees.PrintInfo("Degrees array");
	#endif
		// degrees.DebugPrint();
		FullyDistVec<int64_t, int64_t> Cands(A.getcommgrid(), ITERS, 0);
		double nver = (double) degrees.TotalLength();
		
	#ifdef DETERMINISTIC
		uint64_t seed = 1383098845;
	#else
		uint64_t seed= time(NULL);
	#endif
		MTRand M(seed);	// generate random numbers with Mersenne Twister 
		
		vector<double> loccands(ITERS);
		vector<int64_t> loccandints(ITERS);
		if(myrank == 0)
		{
			for(int i=0; i<ITERS; ++i)
				loccands[i] = M.rand();
			copy(loccands.begin(), loccands.end(), ostream_iterator<double>(cout," ")); cout << endl;
			transform(loccands.begin(), loccands.end(), loccands.begin(), bind2nd( multiplies<double>(), nver ));
			
			for(int i=0; i<ITERS; ++i)
				loccandints[i] = static_cast<int64_t>(loccands[i]);
			copy(loccandints.begin(), loccandints.end(), ostream_iterator<double>(cout," ")); cout << endl;
		}

		MPI_Bcast(&(loccandints[0]), ITERS, MPIType<int64_t>(),0,MPI_COMM_WORLD);
		for(int i=0; i<ITERS; ++i)
		{
			Cands.SetElement(i,loccandints[i]);
		}

		#define MAXTRIALS 1
		for(int trials =0; trials < MAXTRIALS; trials++)	// try different algorithms for BFS if MAXTRIALS > 1
		{
			cblas_allgathertime = 0;
			cblas_alltoalltime = 0;
			cblas_mergeconttime = 0;
			cblas_transvectime = 0;
			cblas_localspmvtime = 0;
			cblas_ewisemulttime = 0;
			bottomup_sendrecv = 0;
			bottomup_allgather  = 0;
			bottomup_total = 0;
			bottomup_convert = 0;
			
			bu_local = 0;
			bu_update = 0;
			bu_rotate = 0;

			MPI_Pcontrol(1,"BFS");

			double MTEPS[ITERS]; double INVMTEPS[ITERS]; double TIMES[ITERS]; double EDGES[ITERS];

			for(int i=0; i<ITERS; ++i)
			{
				SpParHelper::Print("A BFS iteration is starting\n");
				
				// FullyDistVec ( shared_ptr<CommGrid> grid, IT globallen, NT initval);
				FullyDistVec<int64_t, int64_t> parents ( Aeff.getcommgrid(), Aeff.getncol(), (int64_t) -1);	// identity is -1

				// FullyDistSpVec ( shared_ptr<CommGrid> grid, IT glen);
				FullyDistSpVec<int64_t, int64_t> fringe(Aeff.getcommgrid(), Aeff.getncol());	// numerical values are stored 0-based
					
				ostringstream devout;
				devout.setf(ios::fixed);

				MPI_Barrier(MPI_COMM_WORLD);
				double t1 = MPI_Wtime();

				int64_t num_edges = Aeff.getnnz();
				int64_t num_nodes = Aeff.getncol();
				int64_t up_cutoff = num_edges / 20;
				int64_t down_cutoff = (((double) num_nodes) * ((double)num_nodes)) / ((double) num_edges * 12.0);

				devout << "param " << num_nodes << " vertices with " << num_edges << " edges" << endl;
				devout << up_cutoff << " up and " << down_cutoff << " down" << endl;

				fringe.SetElement(Cands[i], Cands[i]);
				parents.SetElement(Cands[i], Cands[i]);
				int iterations = 0;

				BitMapFringe<int64_t,int64_t> bm_fringe(fringe.getcommgrid(), fringe);
				BitMapCarousel<int64_t,int64_t> done(Aeff.getcommgrid(), parents.TotalLength(), bm_fringe.GetSubWordDisp());
				SpDCCols<int,bool>::SpColIter *starts = CalcSubStarts(ALocalT, fringe, done);
				int64_t fringe_size = fringe.getnnz();
				int64_t last_fringe_size = 0;
				double pred_start = MPI_Wtime();
				fringe.Apply(myset<int64_t>(1));
				int64_t pred = EWiseMult(fringe, degrees, false, (int64_t) 0).Reduce(plus<int64_t>(), (int64_t) 0);
				double pred_end = MPI_Wtime();
				devout << "  s" << setw(15) << pred << setw(15) << setprecision(5) << (pred_end - pred_start) << endl;
				cblas_ewisemulttime += (pred_end - pred_start); 

				while(fringe_size > 0) 
				{
					if ((pred > up_cutoff) && (last_fringe_size < fringe_size)) 
					{   // Bottom-up
						MPI_Barrier(MPI_COMM_WORLD);
						double conv_start = MPI_Wtime();
						done.LoadVec(parents);
						bm_fringe.LoadFromSpVec(fringe);
						double conv_end = MPI_Wtime();
						devout << "  c" << setw(30) << setprecision(5) << (conv_end - conv_start) << endl;
						bottomup_convert += (conv_end - conv_start);

						while (fringe_size > 0) 		
						{
							double step_start = MPI_Wtime();
							BottomUpStep(ALocalT, fringe, bm_fringe, parents, done, starts);
							double step_end = MPI_Wtime();

							devout << setw(2) << iterations << "u" << setw(15) << fringe_size << setprecision(5) << setw(15) << (step_end-step_start) << endl;
							bottomup_total += (step_end-step_start);
							iterations++;
							last_fringe_size = fringe_size;
							fringe_size = bm_fringe.GetNumSet();
							if ((fringe_size < down_cutoff) && (last_fringe_size > fringe_size)) 
							{
								conv_start = MPI_Wtime();
								bm_fringe.UpdateSpVec(fringe);
								conv_end = MPI_Wtime();
								devout << "  c" << setw(30) << setprecision(5) << (conv_end - conv_start) << endl;
								bottomup_convert += (conv_end - conv_start);
								break;
							}
						}
					} 
					else 
					{   // Top-down
						double step_start = MPI_Wtime();
						fringe.setNumToInd();
						fringe = SpMV(Aeff, fringe,optbuf);
						double ewise_start = MPI_Wtime();
						fringe = EWiseMult(fringe, parents, true, (int64_t) -1);
						parents.Set(fringe);
						double step_end = MPI_Wtime();
						devout << setw(2) << iterations << "d" << setw(15) << fringe.getnnz() << setw(15) << setprecision(5) << (step_end-step_start) << endl;
						cblas_ewisemulttime += (step_end - ewise_start); 

						pred_start = MPI_Wtime();
						fringe.Apply(myset<int64_t>(1));
						pred = EWiseMult(fringe, degrees, false, (int64_t) 0).Reduce(plus<int64_t>(), (int64_t) 0);
						pred_end = MPI_Wtime();
						devout << "  s" << setw(15) << pred << setw(15) << setprecision(5) << (pred_end - pred_start) << endl;
						cblas_ewisemulttime += (pred_end - pred_start); 
						iterations++;
						last_fringe_size = fringe_size;
						fringe_size = fringe.getnnz();
					}
				}
				MPI_Barrier(MPI_COMM_WORLD);
				double t2 = MPI_Wtime();
				delete[] starts;
				SpParHelper::Print(devout.str());
				
				FullyDistSpVec<int64_t, int64_t> parentsp = parents.Find(bind2nd(greater<int64_t>(), -1));
				parentsp.Apply(myset<int64_t>(1));	
				// we use degrees on the directed graph, so that we don't count the reverse edges in the teps score
				int64_t nedges = EWiseMult(parentsp, degrees, false, (int64_t) 0).Reduce(plus<int64_t>(), (int64_t) 0);
				int64_t nverts = parentsp.Reduce(plus<int64_t>(), (int64_t) 0);
				
				ostringstream outnew;
				outnew << i << "th starting vertex was " << Cands[i] << endl;
				outnew << "Number iterations: " << iterations << endl;
				outnew << "Number of vertices found: " << nverts << endl; 
				outnew << "Number of edges traversed: " << nedges << endl;
				outnew << "BFS time: " << t2-t1 << " seconds" << endl;
				outnew << "MTEPS: " << static_cast<double>(nedges) / (t2-t1) / 1000000.0 << endl;
				outnew << "Total communication (average so far): " << (cblas_allgathertime + cblas_alltoalltime) / (i+1) << endl;
				TIMES[i] = t2-t1;
				EDGES[i] = nedges;
				MTEPS[i] = static_cast<double>(nedges) / (t2-t1) / 1000000.0;
				SpParHelper::Print(outnew.str());
			}
			MPI_Pcontrol(-1,"BFS");
			SpParHelper::Print("Finished\n");
#ifdef TIMING
			double * bu_total, *bu_ag_all, *bu_sr_all, *bu_convert, *td_ag_all, *td_a2a_all, *td_tv_all, *td_mc_all, *td_spmv_all, *td_ewm_all;
			if(myrank == 0)
			{
				bu_total = new double[nprocs];
				bu_ag_all = new double[nprocs];
				bu_sr_all = new double[nprocs];
				bu_convert = new double[nprocs];
				td_ag_all = new double[nprocs];
				td_a2a_all = new double[nprocs];
				td_tv_all = new double[nprocs];
				td_mc_all = new double[nprocs];
				td_spmv_all = new double[nprocs];
				td_ewm_all = new double[nprocs];
			}
			bottomup_allgather /= static_cast<double>(ITERS);
			bottomup_sendrecv /= static_cast<double>(ITERS);
			bottomup_total /= static_cast<double>(ITERS);
			bottomup_convert /= static_cast<double>(ITERS);	// conversion not included in total time
			
			cblas_allgathertime /= static_cast<double>(ITERS);
			cblas_alltoalltime /= static_cast<double>(ITERS);
			cblas_transvectime /= static_cast<double>(ITERS);
			cblas_mergeconttime /= static_cast<double>(ITERS);
			cblas_localspmvtime /= static_cast<double>(ITERS);
			cblas_ewisemulttime /= static_cast<double>(ITERS);
			
			MPI_Gather(&bottomup_convert, 1, MPI_DOUBLE, bu_convert, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
			MPI_Gather(&bottomup_total, 1, MPI_DOUBLE, bu_total, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
			MPI_Gather(&bottomup_allgather, 1, MPI_DOUBLE, bu_ag_all, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
			MPI_Gather(&bottomup_sendrecv, 1, MPI_DOUBLE, bu_sr_all, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
			MPI_Gather(&cblas_allgathertime, 1, MPI_DOUBLE, td_ag_all, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
			MPI_Gather(&cblas_alltoalltime, 1, MPI_DOUBLE, td_a2a_all, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
			MPI_Gather(&cblas_transvectime, 1, MPI_DOUBLE, td_tv_all, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
			MPI_Gather(&cblas_mergeconttime, 1, MPI_DOUBLE, td_mc_all, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
			MPI_Gather(&cblas_localspmvtime, 1, MPI_DOUBLE, td_spmv_all, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
			MPI_Gather(&cblas_ewisemulttime, 1, MPI_DOUBLE, td_ewm_all, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

			double bu_local_total = 0;
			double bu_update_total = 0;
			double bu_rotate_total = 0;

			MPI_Allreduce(&bu_local, &bu_local_total, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
			MPI_Allreduce(&bu_update, &bu_update_total, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
			MPI_Allreduce(&bu_rotate, &bu_rotate_total, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);

			if(myrank == 0)
			{
				cout << "BU Local: " << bu_local_total/nprocs << endl;
				cout << "BU Update: " << bu_update_total/nprocs << endl;
				cout << "BU Rotate: " << bu_rotate_total/nprocs << endl;

				vector<double> total_time(nprocs, 0);
				for(int i=0; i< nprocs; ++i) 				// find the mean performing guy
					total_time[i] += bu_total[i] + bu_convert[i] + td_ag_all[i] +  td_a2a_all[i] + td_tv_all[i] + td_mc_all[i] + td_spmv_all[i] + td_ewm_all[i];
                
				vector<size_t> permutation = SpHelper::find_order(total_time);
				size_t smallest = permutation[0];
				size_t largest = permutation[nprocs-1];
				size_t median = permutation[nprocs/2];
				
				cout << "TOTAL (accounted) MEAN: " << accumulate( total_time.begin(), total_time.end(), 0.0 )/ static_cast<double> (nprocs) << endl;
				cout << "TOTAL (accounted) MAX: " << total_time[0] << endl;
				cout << "TOTAL (accounted) MIN: " << total_time[nprocs-1]  << endl;
				cout << "TOTAL (accounted) MEDIAN: " << total_time[nprocs/2] << endl;
				cout << "-------------------------------" << endl;
				
				cout << "Convert median: " << bu_convert[median] << endl;
				cout << "Bottom-up allgather median: " << bu_ag_all[median] << endl;
				cout << "Bottom-up send-recv median: " << bu_sr_all[median] << endl;
				cout << "Bottom-up compute median: " << bu_total[median] - (bu_ag_all[median] + bu_sr_all[median]) << endl;
				cout << "Top-down allgather median: " << td_ag_all[median] << endl;
				cout << "Top-down all2all median: " << td_a2a_all[median] << endl;
				cout << "Top-down transposevector median: " << td_tv_all[median] << endl;
				cout << "Top-down mergecontributions median: " << td_mc_all[median] << endl;
				cout << "Top-down spmsv median: " << td_spmv_all[median] << endl;
				cout << "-------------------------------" << endl;
				
				cout << "Convert MEAN: " << accumulate( bu_convert, bu_convert+nprocs, 0.0 )/ static_cast<double> (nprocs) << endl;
				cout << "Bottom-up total MEAN: " << accumulate( bu_total, bu_total+nprocs, 0.0 )/ static_cast<double> (nprocs) << endl;
				cout << "Bottom-up allgather MEAN: " << accumulate( bu_ag_all, bu_ag_all+nprocs, 0.0 )/ static_cast<double> (nprocs) << endl;
				cout << "Bottom-up send-recv MEAN: " << accumulate( bu_sr_all, bu_sr_all+nprocs, 0.0 )/ static_cast<double> (nprocs) << endl;
				cout << "Top-down allgather MEAN: " << accumulate( td_ag_all, td_ag_all+nprocs, 0.0 )/ static_cast<double> (nprocs) << endl;
				cout << "Top-down all2all MEAN: " << accumulate( td_a2a_all, td_a2a_all+nprocs, 0.0 )/ static_cast<double> (nprocs) << endl;
				cout << "Top-down transposevector MEAN: " << accumulate( td_tv_all, td_tv_all+nprocs, 0.0 )/ static_cast<double> (nprocs) << endl;
				cout << "Top-down mergecontributions MEAN: " << accumulate( td_mc_all, td_mc_all+nprocs, 0.0 )/ static_cast<double> (nprocs) << endl;
				cout << "Top-down spmsv MEAN: " << accumulate( td_spmv_all, td_spmv_all+nprocs, 0.0 )/ static_cast<double> (nprocs) << endl;
				cout << "-------------------------------" << endl;

				
				cout << "Bottom-up allgather fastest: " << bu_ag_all[smallest] << endl;
				cout << "Bottom-up send-recv fastest: " << bu_sr_all[smallest] << endl;
				cout << "Bottom-up compute fastest: " << bu_total[smallest] - (bu_ag_all[smallest] + bu_sr_all[smallest]) << endl;
				cout << "Top-down allgather fastest: " << td_ag_all[smallest] << endl;
				cout << "Top-down all2all fastest: " << td_a2a_all[smallest] << endl;
				cout << "Top-down transposevector fastest: " << td_tv_all[smallest] << endl;
				cout << "Top-down mergecontributions fastest: " << td_mc_all[smallest] << endl;
				cout << "Top-down spmsv fastest: " << td_spmv_all[smallest] << endl;
				cout << "-------------------------------" << endl;

				
				cout << "Bottom-up allgather slowest: " << bu_ag_all[largest] << endl;
				cout << "Bottom-up send-recv slowest: " << bu_sr_all[largest] << endl;
				cout << "Bottom-up compute slowest: " << bu_total[largest] - (bu_ag_all[largest] + bu_sr_all[largest]) << endl;
				cout << "Top-down allgather slowest: " << td_ag_all[largest] << endl;
				cout << "Top-down all2all slowest: " << td_a2a_all[largest] << endl;
				cout << "Top-down transposevector slowest: " << td_tv_all[largest] << endl;
				cout << "Top-down mergecontributions slowest: " << td_mc_all[largest] << endl;
				cout << "Top-down spmsv slowest: " << td_spmv_all[largest] << endl;
			}
#endif
			ostringstream os;
			sort(EDGES, EDGES+ITERS);
			os << "--------------------------" << endl;
			os << "Min nedges: " << EDGES[0] << endl;
			os << "First Quartile nedges: " << (EDGES[(ITERS/4)-1] + EDGES[ITERS/4])/2 << endl;
			os << "Median nedges: " << (EDGES[(ITERS/2)-1] + EDGES[ITERS/2])/2 << endl;
			os << "Third Quartile nedges: " << (EDGES[(3*ITERS/4) -1 ] + EDGES[3*ITERS/4])/2 << endl;
			os << "Max nedges: " << EDGES[ITERS-1] << endl;
 			double mean = accumulate( EDGES, EDGES+ITERS, 0.0 )/ ITERS;
			vector<double> zero_mean(ITERS);	// find distances to the mean
			transform(EDGES, EDGES+ITERS, zero_mean.begin(), bind2nd( minus<double>(), mean )); 	
			// self inner-product is sum of sum of squares
			double deviation = inner_product( zero_mean.begin(),zero_mean.end(), zero_mean.begin(), 0.0 );
   			deviation = sqrt( deviation / (ITERS-1) );
   			os << "Mean nedges: " << mean << endl;
			os << "STDDEV nedges: " << deviation << endl;
			os << "--------------------------" << endl;
	
			sort(TIMES,TIMES+ITERS);
			os << "Min time: " << TIMES[0] << " seconds" << endl;
			os << "First Quartile time: " << (TIMES[(ITERS/4)-1] + TIMES[ITERS/4])/2 << " seconds" << endl;
			os << "Median time: " << (TIMES[(ITERS/2)-1] + TIMES[ITERS/2])/2 << " seconds" << endl;
			os << "Third Quartile time: " << (TIMES[(3*ITERS/4)-1] + TIMES[3*ITERS/4])/2 << " seconds" << endl;
			os << "Max time: " << TIMES[ITERS-1] << " seconds" << endl;
 			mean = accumulate( TIMES, TIMES+ITERS, 0.0 )/ ITERS;
			transform(TIMES, TIMES+ITERS, zero_mean.begin(), bind2nd( minus<double>(), mean )); 	
			deviation = inner_product( zero_mean.begin(),zero_mean.end(), zero_mean.begin(), 0.0 );
   			deviation = sqrt( deviation / (ITERS-1) );
   			os << "Mean time: " << mean << " seconds" << endl;
			os << "STDDEV time: " << deviation << " seconds" << endl;
			os << "--------------------------" << endl;

			sort(MTEPS, MTEPS+ITERS);
			os << "Min MTEPS: " << MTEPS[0] << endl;
			os << "First Quartile MTEPS: " << (MTEPS[(ITERS/4)-1] + MTEPS[ITERS/4])/2 << endl;
			os << "Median MTEPS: " << (MTEPS[(ITERS/2)-1] + MTEPS[ITERS/2])/2 << endl;
			os << "Third Quartile MTEPS: " << (MTEPS[(3*ITERS/4)-1] + MTEPS[3*ITERS/4])/2 << endl;
			os << "Max MTEPS: " << MTEPS[ITERS-1] << endl;
			transform(MTEPS, MTEPS+ITERS, INVMTEPS, safemultinv<double>()); 	// returns inf for zero teps
			double hteps = static_cast<double>(ITERS) / accumulate(INVMTEPS, INVMTEPS+ITERS, 0.0);	
			os << "Harmonic mean of MTEPS: " << hteps << endl;
			transform(INVMTEPS, INVMTEPS+ITERS, zero_mean.begin(), bind2nd(minus<double>(), 1/hteps));
			deviation = inner_product( zero_mean.begin(),zero_mean.end(), zero_mean.begin(), 0.0 );
   			deviation = sqrt( deviation / (ITERS-1) ) * (hteps*hteps);	// harmonic_std_dev
			os << "Harmonic standard deviation of MTEPS: " << deviation << endl;
			SpParHelper::Print(os.str());
		}
	}
	MPI_Finalize();
	return 0;
}