1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
|
/****************************************************************/
/* Parallel Combinatorial BLAS Library (for Graph Computations) */
/* version 1.6 -------------------------------------------------*/
/* date: 6/15/2017 ---------------------------------------------*/
/* authors: Ariful Azad, Aydin Buluc --------------------------*/
/****************************************************************/
/*
Copyright (c) 2010-2017, The Regents of the University of California
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#define DETERMINISTIC
#include "CombBLAS/CombBLAS.h"
#include <mpi.h>
#include <sys/time.h>
#include <iostream>
#include <functional>
#include <algorithm>
#include <vector>
#include <string>
#include <sstream>
#ifdef THREADED
#ifndef _OPENMP
#define _OPENMP
#endif
#include <omp.h>
#endif
double cblas_alltoalltime;
double cblas_allgathertime;
int cblas_splits;
#include "TwitterEdge.h"
#define EDGEFACTOR 5 // For MIS
#define ITERS 16
#define PERCENTS 4 // testing with 4 different percentiles
using namespace std;
using namespace combblas;
template <typename PARMAT>
void Symmetricize(PARMAT & A)
{
// boolean addition is practically a "logical or"
// therefore this doesn't destruct any links
PARMAT AT = A;
AT.Transpose();
A += AT;
}
struct DetSymmetricize: public std::binary_function<TwitterEdge, TwitterEdge, TwitterEdge>
{
// have to deterministically choose between one of the two values.
// cannot just add them because that will change the distribution (small values are unlikely to survive)
TwitterEdge operator()(const TwitterEdge & g, const TwitterEdge & t)
{
TwitterEdge toret = g;
if(((g.latest + t.latest) & 1) == 1)
{
toret.latest = std::min(g.latest, t.latest);
}
else
{
toret.latest = std::max(g.latest, t.latest);
}
return toret;
}
};
typedef SpParMat < int64_t, TwitterEdge, SpDCCols<int64_t, TwitterEdge > > PSpMat_Twitter;
typedef SpParMat < int64_t, bool, SpDCCols<int64_t, bool > > PSpMat_Bool;
void SymmetricizeRands(PSpMat_Twitter & A)
{
PSpMat_Twitter AT = A;
AT.Transpose();
// SpParMat<IU,RETT,RETDER> EWiseApply (const SpParMat<IU,NU1,UDERA> & A,
// const SpParMat<IU,NU2,UDERB> & B, _BinaryOperation __binary_op, bool notB, const NU2& defaultBVal)
// Default B value is irrelevant since the structures of the matrices are
A = EWiseApply<TwitterEdge, SpDCCols<int64_t, TwitterEdge > >(A, AT, DetSymmetricize(), false, TwitterEdge());
}
#ifdef DETERMINISTIC
MTRand GlobalMT(1);
#else
MTRand GlobalMT; // generate random numbers with Mersenne Twister
#endif
struct Twitter_obj_randomizer : public std::unary_function<TwitterEdge, TwitterEdge>
{
const TwitterEdge operator()(const TwitterEdge & x) const
{
short mycount = 1;
bool myfollow = 0;
time_t mylatest = static_cast<int64_t>(GlobalMT.rand() * 10000); // random.randrange(0,10000)
return TwitterEdge(mycount, myfollow, mylatest);
}
};
struct Twitter_materialize: public std::binary_function<TwitterEdge, time_t, bool>
{
bool operator()(const TwitterEdge & x, time_t sincedate) const
{
if(x.isRetwitter() && x.LastTweetBy(sincedate))
return false; // false if the edge is going to be kept
else
return true; // true if the edge is to be pruned
}
};
// def rand( verc ):
// import random
// return random.random()
struct randGen : public std::unary_function<double, double>
{
const double operator()(const double & ignore)
{
return GlobalMT.rand();
}
};
int main(int argc, char* argv[])
{
int nprocs, myrank;
#ifdef _OPENMP
int cblas_splits = omp_get_max_threads();
int provided, flag, claimed;
MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED, &provided );
MPI_Is_thread_main( &flag );
if (!flag)
SpParHelper::Print("This thread called init_thread but Is_thread_main gave false\n");
MPI_Query_thread( &claimed );
if (claimed != provided)
SpParHelper::Print("Query thread gave different thread level than requested\n");
#else
MPI_Init(&argc, &argv);
int cblas_splits = 1;
#endif
MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
if(argc < 2)
{
if(myrank == 0)
{
cout << "Usage: ./FilteredMIS <Scale>" << endl;
}
MPI_Finalize();
return -1;
}
{
// Declare objects
PSpMat_Twitter A;
shared_ptr<CommGrid> fullWorld;
fullWorld.reset( new CommGrid(MPI_COMM_WORLD, 0, 0) );
FullyDistVec<int64_t, int64_t> indegrees(fullWorld); // in-degrees of vertices (including multi-edges and self-loops)
FullyDistVec<int64_t, int64_t> oudegrees(fullWorld); // out-degrees of vertices (including multi-edges and self-loops)
FullyDistVec<int64_t, int64_t> degrees(fullWorld); // combined degrees of vertices (including multi-edges and self-loops)
PSpMat_Bool * ABool;
SpParHelper::Print("Using synthetic data, which we ALWAYS permute for load balance\n");
SpParHelper::Print("We only balance the original input, we don't repermute after each filter change\n");
SpParHelper::Print("BFS is run on UNDIRECTED graph, hence hitting CCs, and TEPS is bidirectional\n");
double initiator[4] = {.25, .25, .25, .25}; // creating erdos-renyi
double t01 = MPI_Wtime();
DistEdgeList<int64_t> * DEL = new DistEdgeList<int64_t>();
unsigned scale = static_cast<unsigned>(atoi(argv[1]));
ostringstream outs;
outs << "Forcing scale to : " << scale << endl;
SpParHelper::Print(outs.str());
// parameters: (double initiator[4], int log_numverts, int edgefactor, bool scramble, bool packed)
DEL->GenGraph500Data(initiator, scale, EDGEFACTOR, true, true ); // generate packed edges
SpParHelper::Print("Generated renamed edge lists\n");
ABool = new PSpMat_Bool(*DEL, false);
int64_t removed = ABool->RemoveLoops();
ostringstream loopinfo;
loopinfo << "Converted to Boolean and removed " << removed << " loops" << endl;
SpParHelper::Print(loopinfo.str());
ABool->PrintInfo();
delete DEL; // free memory
A = PSpMat_Twitter(*ABool); // any upcasting generates the default object
double t02 = MPI_Wtime();
ostringstream tinfo;
tinfo << "Generation took " << t02-t01 << " seconds" << endl;
SpParHelper::Print(tinfo.str());
// indegrees is sum along rows because A is loaded as "tranposed", similarly oudegrees is sum along columns
ABool->PrintInfo();
ABool->Reduce(oudegrees, Column, plus<int64_t>(), static_cast<int64_t>(0));
ABool->Reduce(indegrees, Row, plus<int64_t>(), static_cast<int64_t>(0));
// indegrees_filt and oudegrees_filt is used for the real data
FullyDistVec<int64_t, int64_t> indegrees_filt(fullWorld);
FullyDistVec<int64_t, int64_t> oudegrees_filt(fullWorld);
typedef FullyDistVec<int64_t, int64_t> IntVec; // used for the synthetic data (symmetricized before randomization)
FullyDistVec<int64_t, int64_t> degrees_filt[4] = {IntVec(fullWorld), IntVec(fullWorld), IntVec(fullWorld), IntVec(fullWorld)};
int64_t keep[PERCENTS] = {100, 1000, 2500, 10000}; // ratio of edges kept in range (0, 10000)
degrees = indegrees;
degrees.EWiseApply(oudegrees, plus<int64_t>());
SpParHelper::Print("All degrees calculated\n");
delete ABool;
float balance = A.LoadImbalance();
ostringstream outlb;
outlb << "Load balance: " << balance << endl;
SpParHelper::Print(outlb.str());
// We symmetricize before we apply the random generator
// Otherwise += will naturally add the random numbers together
// hence will create artificially high-permeable filters
Symmetricize(A); // A += A';
SpParHelper::Print("Symmetricized\n");
A.Apply(Twitter_obj_randomizer());
A.PrintInfo();
SymmetricizeRands(A);
SpParHelper::Print("Symmetricized Rands\n");
A.PrintInfo();
FullyDistVec<int64_t, int64_t> * nonisov = new FullyDistVec<int64_t, int64_t>(degrees.FindInds(bind2nd(greater<int64_t>(), 0)));
SpParHelper::Print("Found (and permuted) non-isolated vertices\n");
nonisov->RandPerm(); // so that A(v,v) is load-balanced (both memory and time wise)
A(*nonisov, *nonisov, true); // in-place permute to save memory
SpParHelper::Print("Dropped isolated vertices from input\n");
indegrees = indegrees(*nonisov); // fix the degrees arrays too
oudegrees = oudegrees(*nonisov);
degrees = degrees(*nonisov);
delete nonisov;
for (int i=0; i < PERCENTS; i++)
{
PSpMat_Twitter B = A;
B.Prune(bind2nd(Twitter_materialize(), keep[i]));
PSpMat_Bool BBool = B;
BBool.PrintInfo();
float balance = B.LoadImbalance();
ostringstream outs;
outs << "Load balance of " << static_cast<float>(keep[i])/100 << "% filtered case: " << balance << endl;
SpParHelper::Print(outs.str());
// degrees_filt[i] is by-default generated as permuted
BBool.Reduce(degrees_filt[i], Column, plus<int64_t>(), static_cast<int64_t>(0)); // Column=Row since BBool is symmetric
}
float balance_former = A.LoadImbalance();
ostringstream outs_former;
outs_former << "Load balance: " << balance_former << endl;
SpParHelper::Print(outs_former.str());
for(int trials =0; trials < PERCENTS; trials++)
{
cblas_allgathertime = 0;
cblas_alltoalltime = 0;
double MISVS[ITERS]; // numbers of vertices in each MIS
double TIMES[ITERS];
LatestRetwitterMIS::sincedate = keep[trials];
LatestRetwitterSelect2nd::sincedate = keep[trials];
ostringstream outs;
outs << "Initializing since date (only once) to " << LatestRetwitterMIS::sincedate << endl;
SpParHelper::Print(outs.str());
for(int sruns = 0; sruns < ITERS; ++sruns)
{
double t1 = MPI_Wtime();
int64_t nvert = A.getncol();
//# the final result set. S[i] exists and is 1 if vertex i is in the MIS
//S = Vec(nvert, sparse=True)
FullyDistSpVec<int64_t, uint8_t> S ( A.getcommgrid(), nvert);
//# the candidate set. initially all vertices are candidates.
//# this vector doubles as 'r', the random value vector.
//# i.e. if C[i] exists, then i is a candidate. The value C[i] is i's r for this iteration.
//C = Vec.ones(nvert, sparse=True)
//FullyDistSpVec's length is not the same as its nnz
//Since FullyDistSpVec::Apply only affects nonzeros, nnz should be forced to glen
// FullyDistVec ( shared_ptr<CommGrid> grid, IT globallen, NT initval);
FullyDistVec<int64_t, double> * denseC = new FullyDistVec<int64_t, double>( A.getcommgrid(), nvert, 1.0);
FullyDistSpVec<int64_t, double> C ( *denseC);
delete denseC;
FullyDistSpVec<int64_t, double> min_neighbor_r ( A.getcommgrid(), nvert);
FullyDistSpVec<int64_t, uint8_t> new_S_members ( A.getcommgrid(), nvert);
FullyDistSpVec<int64_t, uint8_t> new_S_neighbors ( A.getcommgrid(), nvert);
while (C.getnnz() > 0)
{
//# label each vertex in C with a random value
C.Apply(randGen());
//# find the smallest random value among a vertex's neighbors
//# In other words: min_neighbor_r[i] = min(C[j] for all neighbors j of vertex i)
//min_neighbor_r = Gmatrix.SpMV(C, sr(myMin,select2nd)) # could use "min" directly
SpMV<LatestRetwitterMIS>(A, C, min_neighbor_r, false); // min_neighbor_r empty OK?
#ifdef PRINTITERS
min_neighbor_r.PrintInfo("Neighbors");
#endif
#ifdef DEBUG
min_neighbor_r.DebugPrint();
C.DebugPrint();
#endif
//# The vertices to be added to S this iteration are those whose random value is
//# smaller than those of all its neighbors:
//# new_S_members[i] exists if C[i] < min_neighbor_r[i]
//# If C[i] exists and min_neighbor_r[i] doesn't, still a value is returned with bin_op(NULL,C[i])
//new_S_members = min_neighbor_r.eWiseApply(C, return1, doOp=is2ndSmaller, allowANulls=True, allowBNulls=False, inPlace=False, ANull=2)
new_S_members = EWiseApply<uint8_t>(min_neighbor_r, C, return1_uint8(), is2ndSmaller(), true, false, (double) 2.0, (double) 2.0, true);
//// template <typename RET, typename IU ...>
//// FullyDistSpVec<IU,RET> EWiseApply (const FullyDistSpVec<IU,NU1> & V, const FullyDistSpVec<IU,NU2> & W , _BinaryOperation _binary_op, _BinaryPredicate _doOp,
//// bool allowVNulls, bool allowWNulls, NU1 Vzero, NU2 Wzero, const bool allowIntersect = true);
#ifdef PRINTITERS
new_S_members.PrintInfo("New members of the MIS");
#endif
#ifdef DEBUG
new_S_members.DebugPrint();
#endif
//# new_S_members are no longer candidates, so remove them from C
//C.eWiseApply(new_S_members, return1, allowANulls=False, allowIntersect=False, allowBNulls=True, inPlace=True)
C = EWiseApply<double>(C, new_S_members, return1_uint8(), return1_uint8(), false, true, (double) 0.0, (uint8_t) 0, false);
#ifdef PRINTITERS
C.PrintInfo("Entries to be removed from the Candidates set");
#endif
//# find neighbors of new_S_members
//new_S_neighbors = Gmatrix.SpMV(new_S_members, sr(select2nd,select2nd))
SpMV<LatestRetwitterSelect2nd>(A, new_S_members, new_S_neighbors, false);
//# remove neighbors of new_S_members from C, because they cannot be part of the MIS anymore
//# If C[i] exists and new_S_neighbors[i] doesn't, still a value is returned with bin_op(NULL,C[i])
//C.eWiseApply(new_S_neighbors, return1, allowANulls=False, allowIntersect=False, allowBNulls=True, inPlace=True)
C = EWiseApply<double>(C, new_S_neighbors, return1_uint8(), return1_uint8(), false, true, (double) 0.0, (uint8_t) 0, false);
#ifdef PRINTITERS
C.PrintInfo("Candidates set after neighbors of MIS removed");
#endif
//# add new_S_members to S
//S.eWiseApply(new_S_members, return1, allowANulls=True, allowBNulls=True, inPlace=True)
S = EWiseApply<uint8_t>(S, new_S_members, return1_uint8(), return1_uint8(), true, true, (uint8_t) 1, (uint8_t) 1, true);
S.PrintInfo("The current MIS:");
}
double t2 = MPI_Wtime();
ostringstream ositr;
ositr << "MIS has " << S.getnnz() << " vertices" << endl;
SpParHelper::Print(ositr.str());
ostringstream ositr2;
ositr << "MIS time: " << t2-t1 << " seconds" << endl;
SpParHelper::Print(ositr.str());
TIMES[sruns] = t2-t1;
MISVS[sruns] = S.getnnz();
} // end for(int sruns = 0; sruns < ITERS; ++sruns)
ostringstream os;
os << "Per iteration communication times: " << endl;
os << "AllGatherv: " << cblas_allgathertime / ITERS << endl;
os << "AlltoAllv: " << cblas_alltoalltime / ITERS << endl;
sort(MISVS, MISVS+ITERS);
os << "--------------------------" << endl;
os << "Min MIS vertices: " << MISVS[0] << endl;
os << "Median MIS vertices: " << (MISVS[(ITERS/2)-1] + MISVS[ITERS/2])/2 << endl;
os << "Max MIS vertices: " << MISVS[ITERS-1] << endl;
double mean = accumulate( MISVS, MISVS+ITERS, 0.0 )/ ITERS;
vector<double> zero_mean(ITERS); // find distances to the mean
transform(MISVS, MISVS+ITERS, zero_mean.begin(), bind2nd( minus<double>(), mean ));
// self inner-product is sum of sum of squares
double deviation = inner_product( zero_mean.begin(),zero_mean.end(), zero_mean.begin(), 0.0 );
deviation = sqrt( deviation / (ITERS-1) );
os << "Mean MIS vertices: " << mean << endl;
os << "STDDEV MIS vertices: " << deviation << endl;
os << "--------------------------" << endl;
sort(TIMES,TIMES+ITERS);
os << "Filter keeps " << static_cast<double>(keep[trials])/100.0 << " percentage of edges" << endl;
os << "Min time: " << TIMES[0] << " seconds" << endl;
os << "Median time: " << (TIMES[(ITERS/2)-1] + TIMES[ITERS/2])/2 << " seconds" << endl;
os << "Max time: " << TIMES[ITERS-1] << " seconds" << endl;
mean = accumulate( TIMES, TIMES+ITERS, 0.0 )/ ITERS;
transform(TIMES, TIMES+ITERS, zero_mean.begin(), bind2nd( minus<double>(), mean ));
deviation = inner_product( zero_mean.begin(),zero_mean.end(), zero_mean.begin(), 0.0 );
deviation = sqrt( deviation / (ITERS-1) );
os << "Mean time: " << mean << " seconds" << endl;
os << "STDDEV time: " << deviation << " seconds" << endl;
os << "--------------------------" << endl;
SpParHelper::Print(os.str());
} // end for(int trials =0; trials < PERCENTS; trials++)
}
MPI_Finalize();
return 0;
}
|