1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
|
/****************************************************************/
/* Parallel Combinatorial BLAS Library (for Graph Computations) */
/* version 1.6 -------------------------------------------------*/
/* date: 6/15/2017 ---------------------------------------------*/
/* authors: Ariful Azad, Aydin Buluc --------------------------*/
/****************************************************************/
/*
Copyright (c) 2010-2017, The Regents of the University of California
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <mpi.h>
// These macros should be defined before stdint.h is included
#ifndef __STDC_CONSTANT_MACROS
#define __STDC_CONSTANT_MACROS
#endif
#ifndef __STDC_LIMIT_MACROS
#define __STDC_LIMIT_MACROS
#endif
#include <stdint.h>
#include <sys/time.h>
#include <iostream>
#include <fstream>
#include <string>
#include <sstream> // Required for stringstreams
#include <ctime>
#include <cmath>
#include "CombBLAS/CombBLAS.h"
#include "CC.h"
#include "WriteMCLClusters.h"
using namespace std;
using namespace combblas;
#define EPS 0.0001
double mcl_symbolictime;
double mcl_Abcasttime;
double mcl_Bbcasttime;
double mcl_localspgemmtime;
double mcl_multiwaymergetime;
double mcl_kselecttime;
double mcl_prunecolumntime;
/* Variables specific for timing communication avoiding setting in detail*/
double mcl3d_conversiontime;
double mcl3d_symbolictime;
double mcl3d_Abcasttime;
double mcl3d_Bbcasttime;
double mcl3d_SUMMAtime;
double mcl3d_localspgemmtime;
double mcl3d_SUMMAmergetime;
double mcl3d_reductiontime;
double mcl3d_3dmergetime;
double mcl3d_kselecttime;
// for compilation (TODO: fix this dependency)
int cblas_splits;
double cblas_alltoalltime;
double cblas_allgathertime;
double cblas_localspmvtime;
double cblas_mergeconttime;
double cblas_transvectime;
int64_t mcl_memory;
double tIO;
typedef struct
{
//Input/Output file
string ifilename;
bool isInputMM;
int base; // only usefule for matrix market files
string ofilename;
//Preprocessing
int randpermute;
bool remove_isolated;
//inflation
double inflation;
//pruning
double prunelimit;
int64_t select;
int64_t recover_num;
double recover_pct;
int kselectVersion; // 0: adapt based on k, 1: kselect1, 2: kselect2
bool preprune;
//HipMCL optimization
int phases;
int perProcessMem;
bool isDoublePrecision; // true: double, false: float
bool is64bInt; // true: int64_t for local indexing, false: int32_t (for local indexing)
int layers; // Number of layers to use in communication avoiding SpGEMM.
int compute;
//debugging
bool show;
}HipMCLParam;
void InitParam(HipMCLParam & param)
{
//Input/Output file
param.ifilename = "";
param.isInputMM = false;
param.ofilename = "";
param.base = 1;
//Preprocessing
// mcl removes isolated vertices by default,
// we don't do this because it will create different ordering of vertices!
param.remove_isolated = false;
param.randpermute = 0;
//inflation
param.inflation = 0.0;
//pruning
param.prunelimit = 1.0/10000.0;
param.select = 1100;
param.recover_num = 1400;
param.recover_pct = .9; // we allow both 90 or .9 as input. Internally, we keep it 0.9
param.kselectVersion = 1;
param.preprune = false;
//HipMCL optimization
param.layers = 1;
param.compute = 1; // 1 means hash-based computation, 2 means heap-based computation
param.phases = 1;
param.perProcessMem = 0;
param.isDoublePrecision = true;
param.is64bInt = true;
//debugging
param.show = false;
}
void ShowParam(HipMCLParam & param)
{
ostringstream runinfo;
runinfo << "\n======================================" << endl;
runinfo << "Running HipMCL with the parameters: " << endl;
runinfo << "======================================" << endl;
runinfo << "Input/Output file" << endl;
runinfo << " input filename: " << param.ifilename << endl;
runinfo << " input file type: " ;
if(param.isInputMM)
{
runinfo << " Matrix Market" << endl;
runinfo << " Base of the input matrix: " << param.base << endl;
}
else runinfo << " Labeled Triples format" << endl;
runinfo << " Output filename: " << param.ofilename << endl;
runinfo << "Preprocessing" << endl;
runinfo << " Remove isolated vertices? : ";
if (param.remove_isolated) runinfo << "yes";
else runinfo << "no" << endl;
runinfo << " Randomly permute vertices? : ";
if (param.randpermute) runinfo << "yes";
else runinfo << "no" << endl;
runinfo << "Inflation: " << param.inflation << endl;
runinfo << "Pruning" << endl;
runinfo << " Prunelimit: " << param.prunelimit << endl;
runinfo << " Recover number: " << param.recover_num << endl;
runinfo << " Recover percent: " << ceil(param.recover_pct*100) << endl;
runinfo << " Selection number: " << param.select << endl;
runinfo << " Apply prune/select/recovery before the first iteration? : ";
if (param.preprune) runinfo << "yes"<< endl;
else runinfo << "no" << endl;
// do not expose selection option at this moment
//runinfo << "Selection algorithm: ";
//if(kselectVersion==1) runinfo << "tournament select" << endl;
//else if(kselectVersion==2) runinfo << "quickselect" << endl;
//else runinfo << "adaptive based on k" << endl;
runinfo << "HipMCL optimization" << endl;
runinfo << " Number of layers : " << param.layers << endl;
runinfo << " Computation kernel : " << param.compute << endl;
runinfo << " Number of phases: " << param.phases << endl;
runinfo << " Memory avilable per process: ";
if(param.perProcessMem>0) runinfo << param.perProcessMem << "GB" << endl;
else runinfo << "not provided" << endl;
if(param.isDoublePrecision) runinfo << "Using double precision floating point" << endl;
else runinfo << "Using single precision floating point" << endl;
if(param.is64bInt ) runinfo << "Using 64 bit local indexing" << endl;
else runinfo << "Using 32 bit local indexing" << endl;
runinfo << "Debugging" << endl;
runinfo << " Show matrices after major steps? : ";
if (param.show) runinfo << "yes";
else runinfo << "no" << endl;
runinfo << "======================================" << endl;
SpParHelper::Print(runinfo.str());
}
void ProcessParam(int argc, char* argv[], HipMCLParam & param)
{
for (int i = 1; i < argc; i++)
{
if (strcmp(argv[i],"-M")==0){
param.ifilename = string(argv[i+1]);
}
else if (strcmp(argv[i],"--matrix-market")==0){
param.isInputMM = true;
}
else if (strcmp(argv[i],"-o")==0){
param.ofilename = string(argv[i+1]);
}
else if (strcmp(argv[i],"--show")==0){
param.show = true;
}
else if (strcmp(argv[i],"--remove-isolated")==0){
param.remove_isolated = true;
}
else if (strcmp(argv[i],"--tournament-select")==0){
param.kselectVersion = 1;
}
else if (strcmp(argv[i],"--quick-select")==0){
param.kselectVersion = 2;
}
else if (strcmp(argv[i],"-I")==0){
param.inflation = atof(argv[i + 1]);
} else if (strcmp(argv[i],"-p")==0) {
param.prunelimit = atof(argv[i + 1]);
} else if (strcmp(argv[i],"-S")==0) {
param.select = atoi(argv[i + 1]);
} else if (strcmp(argv[i],"-R")==0) {
param.recover_num = atoi(argv[i + 1]);
} else if (strcmp(argv[i],"-pct")==0)
{
param.recover_pct = atof(argv[i + 1]);
if(param.recover_pct>1) param.recover_pct/=100.00;
} else if (strcmp(argv[i],"-base")==0) {
param.base = atoi(argv[i + 1]);
}
else if (strcmp(argv[i],"-rand")==0) {
param.randpermute = atoi(argv[i + 1]);
}
else if (strcmp(argv[i],"--preprune")==0) {
param.preprune = true;
}
else if (strcmp(argv[i],"-layers")==0) {
param.layers = atoi(argv[i + 1]);
}
else if (strcmp(argv[i],"-compute")==0) {
param.layers = atoi(argv[i + 1]);
}
else if (strcmp(argv[i],"-phases")==0) {
param.phases = atoi(argv[i + 1]);
}
else if (strcmp(argv[i],"-per-process-mem")==0) {
param.perProcessMem = atoi(argv[i + 1]);
}
else if (strcmp(argv[i],"--single-precision")==0) {
param.isDoublePrecision = false;
}
else if (strcmp(argv[i],"--32bit-local-index")==0) {
param.is64bInt = false;
}
}
if(param.ofilename=="") // construct output file name if it is not provided
{
param.ofilename = param.ifilename + ".hipmcl";
}
}
void ShowOptions()
{
ostringstream runinfo;
runinfo << "Usage: ./hipmcl -M <input filename> -I <inlfation> (required)" << endl;
runinfo << "======================================" << endl;
runinfo << " Detail parameter options " << endl;
runinfo << "======================================" << endl;
runinfo << "Input/Output file" << endl;
runinfo << " -M <input file name (labeled triples format)> (mandatory)" << endl;
runinfo << " --matrix-market : if provided, the input file is in the matrix market format (default: the file is in labeled triples format)" << endl;
runinfo << " -base <index of the first vertex in the matrix market file, 0|1> (default: 1) " << endl;
runinfo << " -o <output filename> (default: input_file_name.hipmcl )" << endl;
runinfo << "Inflation" << endl;
runinfo << "-I <inflation> (mandatory)\n";
runinfo << "Preprocessing" << endl;
runinfo << " -rand <randomly permute vertices> (default:0)\n";
runinfo << " --remove-isolated : if provided, remove isolated vertices (default: don't remove isolated vertices)\n";
runinfo << "Pruning" << endl;
runinfo << " -p <cutoff> (default: 1/10000)\n";
runinfo << " -R <recovery number> (default: 1400)\n";
runinfo << " -pct <recovery pct> (default: 90)\n";
runinfo << " -S <selection number> (default: 1100)\n";
runinfo << " --preprune : if provided, apply prune/select/recovery before the first iteration (needed when dense columns are present) (default: don't preprune. However, if the average nonzero per column is larger than max{S,R}, prepruning is still applied by default)\n";
runinfo << "HipMCL optimization" << endl;
runinfo << " -layers <number of layers> (default:1)\n";
runinfo << " -compute <1 or 2> (default:1)\n";
runinfo << " -phases <number of phases> (default:1)\n";
runinfo << " -per-process-mem <memory (GB) available per process> (default:0, number of phases is not estimated)\n";
runinfo << " --single-precision (if not provided, use double precision floating point numbers)\n" << endl;
runinfo << " --32bit-local-index (if not provided, use 64 bit indexing for vertex ids)\n" << endl;
runinfo << "Debugging" << endl;
runinfo << " --show: show information about matrices after major steps (default: do not show matrices)" << endl;
runinfo << "======================================" << endl;
runinfo << " Few examples " << endl;
runinfo << "======================================" << endl;
runinfo << "Example with with a graph in labeled triples format on a laptop with 8GB memory and 8 cores:\nexport OMP_NUM_THREADS=8\nbin/hipmcl -M data/sevenvertexgraph.txt -I 2 -per-process-mem 8" << endl;
runinfo << "Same as above with 4 processes and 2 theaded per process cores:\nexport OMP_NUM_THREADS=2\nmpirun -np 4 bin/hipmcl -M data/sevenvertexgraph.txt -I 2 -per-process-mem 2" << endl;
runinfo << "Example with a graph in matrix market format:\nbin/hipmcl -M data/sevenvertex.mtx --matrix-market -base 1 -I 2 -per-process-mem 8" << endl;
runinfo << "Example on the NERSC/Cori system with 16 nodes, 4 process per node and 16 threads per process: \nsrun -N 16 -n 64 -c 16 bin/hipmcl -M data/hep-th.mtx --matrix-market -base 1 -per-process-mem 27 -o hep-th.hipmcl" << endl;
SpParHelper::Print(runinfo.str());
}
// base: base of items
// clusters are always numbered 0-based
template <typename IT, typename NT, typename DER>
FullyDistVec<IT, IT> Interpret(SpParMat<IT,NT,DER> & A)
{
IT nCC;
// A is a directed graph
// symmetricize A
SpParMat<IT,NT,DER> AT = A;
AT.Transpose();
A += AT;
SpParHelper::Print("Finding connected components....\n");
FullyDistVec<IT, IT> cclabels = CC(A, nCC);
return cclabels;
}
template <typename IT, typename NT, typename DER>
void MakeColStochastic(SpParMat<IT,NT,DER> & A)
{
FullyDistVec<IT, NT> colsums = A.Reduce(Column, plus<NT>(), 0.0);
colsums.Apply(safemultinv<NT>());
A.DimApply(Column, colsums, multiplies<NT>()); // scale each "Column" with the given vector
}
template <typename IT, typename NT, typename DER>
void MakeColStochastic3D(SpParMat3D<IT,NT,DER> & A3D)
{
//SpParMat<IT, NT, DER> * ALayer = A3D.GetLayerMat();
std::shared_ptr< SpParMat<IT, NT, DER> > ALayer = A3D.GetLayerMat();
FullyDistVec<IT, NT> colsums = ALayer->Reduce(Column, plus<NT>(), 0.0);
colsums.Apply(safemultinv<NT>());
ALayer->DimApply(Column, colsums, multiplies<NT>()); // scale each "Column" with the given vector
}
template <typename IT, typename NT, typename DER>
NT Chaos(SpParMat<IT,NT,DER> & A)
{
// sums of squares of columns
FullyDistVec<IT, NT> colssqs = A.Reduce(Column, plus<NT>(), 0.0, bind2nd(exponentiate(), 2));
// Matrix entries are non-negative, so max() can use zero as identity
FullyDistVec<IT, NT> colmaxs = A.Reduce(Column, maximum<NT>(), 0.0);
colmaxs -= colssqs;
// multiplu by number of nonzeros in each column
FullyDistVec<IT, NT> nnzPerColumn = A.Reduce(Column, plus<NT>(), 0.0, [](NT val){return 1.0;});
colmaxs.EWiseApply(nnzPerColumn, multiplies<NT>());
return colmaxs.Reduce(maximum<NT>(), 0.0);
}
template <typename IT, typename NT, typename DER>
NT Chaos3D(SpParMat3D<IT,NT,DER> & A3D)
{
//SpParMat<IT, NT, DER> * ALayer = A3D.GetLayerMat();
std::shared_ptr< SpParMat<IT, NT, DER> > ALayer = A3D.GetLayerMat();
// sums of squares of columns
FullyDistVec<IT, NT> colssqs = ALayer->Reduce(Column, plus<NT>(), 0.0, bind2nd(exponentiate(), 2));
// Matrix entries are non-negative, so max() can use zero as identity
FullyDistVec<IT, NT> colmaxs = ALayer->Reduce(Column, maximum<NT>(), 0.0);
colmaxs -= colssqs;
// multiply by number of nonzeros in each column
FullyDistVec<IT, NT> nnzPerColumn = ALayer->Reduce(Column, plus<NT>(), 0.0, [](NT val){return 1.0;});
colmaxs.EWiseApply(nnzPerColumn, multiplies<NT>());
NT layerChaos = colmaxs.Reduce(maximum<NT>(), 0.0);
NT totalChaos = 0.0;
MPI_Allreduce( &layerChaos, &totalChaos, 1, MPIType<NT>(), MPI_MAX, A3D.getcommgrid3D()->GetFiberWorld());
return totalChaos;
}
template <typename IT, typename NT, typename DER>
void Inflate(SpParMat<IT,NT,DER> & A, double power)
{
A.Apply(bind2nd(exponentiate(), power));
}
template <typename IT, typename NT, typename DER>
void Inflate3D(SpParMat3D<IT,NT,DER> & A3D, double power)
{
//SpParMat<IT, NT, DER> * ALayer = A3D.GetLayerMat();
std::shared_ptr< SpParMat<IT, NT, DER> > ALayer = A3D.GetLayerMat();
ALayer->Apply(bind2nd(exponentiate(), power));
}
// default adjustloop setting
// 1. Remove loops
// 2. set loops to max of all arc weights
template <typename IT, typename NT, typename DER>
void AdjustLoops(SpParMat<IT,NT,DER> & A)
{
A.RemoveLoops();
FullyDistVec<IT, NT> colmaxs = A.Reduce(Column, maximum<NT>(), numeric_limits<NT>::min());
A.Apply([](NT val){return val==numeric_limits<NT>::min() ? 1.0 : val;}); // for isolated vertices
A.AddLoops(colmaxs);
ostringstream outs;
outs << "Adjusting loops" << endl;
SpParHelper::Print(outs.str());
}
template <typename IT, typename NT, typename DER>
void RemoveIsolated(SpParMat<IT,NT,DER> & A, HipMCLParam & param)
{
ostringstream outs;
FullyDistVec<IT, NT> ColSums = A.Reduce(Column, plus<NT>(), 0.0);
FullyDistVec<IT, IT> nonisov = ColSums.FindInds(bind2nd(greater<NT>(), 0));
IT numIsolated = A.getnrow() - nonisov.TotalLength();
outs << "Number of isolated vertices: " << numIsolated << endl;
SpParHelper::Print(outs.str());
A(nonisov, nonisov, true);
SpParHelper::Print("Removed isolated vertices.\n");
if(param.show)
{
A.PrintInfo();
}
}
//TODO: handle reordered cluster ids
template <typename IT, typename NT, typename DER>
void RandPermute(SpParMat<IT,NT,DER> & A, HipMCLParam & param)
{
// randomly permute for load balance
if(A.getnrow() == A.getncol())
{
FullyDistVec<IT, IT> p( A.getcommgrid());
p.iota(A.getnrow(), 0);
p.RandPerm();
(A)(p,p,true);// in-place permute to save memory
SpParHelper::Print("Applied symmetric permutation.\n");
}
else
{
SpParHelper::Print("Rectangular matrix: Can not apply symmetric permutation.\n");
}
}
template <typename IT, typename NT, typename DER>
FullyDistVec<IT, IT> HipMCL(SpParMat<IT,NT,DER> & A, HipMCLParam & param)
{
if(param.remove_isolated)
RemoveIsolated(A, param);
if(param.randpermute)
RandPermute(A, param);
// Adjust self loops
AdjustLoops(A);
// Make stochastic
MakeColStochastic(A);
SpParHelper::Print("Made stochastic\n");
IT nnz = A.getnnz();
IT nv = A.getnrow();
IT avgDegree = nnz/nv;
if(avgDegree > std::max(param.select, param.recover_num))
{
SpParHelper::Print("Average degree of the input graph is greater than max{S,R}.\n");
param.preprune = true;
}
if(param.preprune)
{
SpParHelper::Print("Applying the prune/select/recovery logic before the first iteration\n\n");
MCLPruneRecoverySelect(A, (NT)param.prunelimit, (IT)param.select, (IT)param.recover_num, (NT)param.recover_pct, param.kselectVersion);
}
if(param.show)
{
A.PrintInfo();
}
// chaos doesn't make sense for non-stochastic matrices
// it is in the range {0,1} for stochastic matrices
NT chaos = 1;
int it=1;
double tInflate = 0;
double tExpand = 0;
typedef PlusTimesSRing<NT, NT> PTFF;
SpParMat3D<IT,NT,DER> A3D_cs(param.layers);
if(param.layers > 1) {
SpParMat<IT,NT,DER> A2D_cs = SpParMat<IT, NT, DER>(A);
A3D_cs = SpParMat3D<IT,NT,DER>(A2D_cs, param.layers, true, false); // Non-special column split
}
// while there is an epsilon improvement
while( chaos > EPS)
{
SpParMat3D<IT,NT,DER> A3D_rs(param.layers);
if(param.layers > 1) {
A3D_rs = SpParMat3D<IT,NT,DER>(A3D_cs, false); // Create new rowsplit copy of matrix from colsplit copy
}
double t1 = MPI_Wtime();
//A.Square<PTFF>() ; // expand
if(param.layers == 1){
A = MemEfficientSpGEMM<PTFF, NT, DER>(A, A, param.phases, param.prunelimit, (IT)param.select, (IT)param.recover_num, param.recover_pct, param.kselectVersion, 1, param.perProcessMem);
}
else{
A3D_cs = MemEfficientSpGEMM3D<PTFF, NT, DER, IT, NT, NT, DER, DER >(
A3D_cs, A3D_rs,
param.phases,
param.prunelimit,
(IT)param.select,
(IT)param.recover_num,
param.recover_pct,
param.kselectVersion,
1,
param.perProcessMem
);
}
if(param.layers == 1){
MakeColStochastic(A);
}
else{
MakeColStochastic3D(A3D_cs);
}
tExpand += (MPI_Wtime() - t1);
if(param.show)
{
SpParHelper::Print("After expansion\n");
A.PrintInfo();
}
if(param.layers == 1) chaos = Chaos(A);
else chaos = Chaos3D(A3D_cs);
double tInflate1 = MPI_Wtime();
if (param.layers == 1) Inflate(A, param.inflation);
else Inflate3D(A3D_cs, param.inflation);
if(param.layers == 1) MakeColStochastic(A);
else MakeColStochastic3D(A3D_cs);
tInflate += (MPI_Wtime() - tInflate1);
if(param.show)
{
SpParHelper::Print("After inflation\n");
A.PrintInfo();
}
double newbalance = A.LoadImbalance();
double t3=MPI_Wtime();
stringstream s;
s << "Iteration# " << setw(3) << it << " : " << " chaos: " << setprecision(3) << chaos << " load-balance: "<< newbalance << " Time: " << (t3-t1) << endl;
SpParHelper::Print(s.str());
it++;
}
#ifdef TIMING
double tcc1 = MPI_Wtime();
#endif
// bool can not be used because
// bool does not work in A.AddLoops(1) used in LACC: can not create a fullydist vector with Bool
// SpParMat<IT,NT,DER> A does not work because int64_t and float promote trait not defined
// hence, we are forcing this with IT and double
SpParMat<IT,double, SpDCCols < IT, double >> ADouble(MPI_COMM_WORLD);
if(param.layers == 1) ADouble = A;
else ADouble = A3D_cs.Convert2D();
FullyDistVec<IT, IT> cclabels = Interpret(ADouble);
#ifdef TIMING
double tcc = MPI_Wtime() - tcc1;
int myrank;
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
if(myrank==0)
{
if(param.layers == 1){
cout << "================detailed timing==================" << endl;
cout << "Expansion: " << mcl_Abcasttime + mcl_Bbcasttime + mcl_localspgemmtime + mcl_multiwaymergetime << endl;
cout << " Abcast= " << mcl_Abcasttime << endl;
cout << " Bbcast= " << mcl_Bbcasttime << endl;
cout << " localspgemm= " << mcl_localspgemmtime << endl;
cout << " multiwaymergetime= "<< mcl_multiwaymergetime << endl;
cout << "Prune: " << mcl_kselecttime + mcl_prunecolumntime << endl;
cout << " kselect= " << mcl_kselecttime << endl;
cout << " prunecolumn= " << mcl_prunecolumntime << endl;
cout << "Inflation " << tInflate << endl;
cout << "Component: " << tcc << endl;
cout << "File I/O: " << tIO << endl;
cout << "=================================================" << endl;
}
else{
cout << "================detailed timing==================" << endl;
cout << "Expansion: " << mcl3d_symbolictime + mcl3d_Abcasttime + mcl3d_Bbcasttime + mcl3d_localspgemmtime + mcl3d_SUMMAmergetime + mcl3d_reductiontime + mcl3d_3dmergetime << endl;
cout << " Symbolic=" << mcl3d_symbolictime << endl;
cout << " SUMMAtime= "<< mcl3d_SUMMAtime << endl;
cout << " Abcast= " << mcl3d_Abcasttime << endl;
cout << " Bbcast= " << mcl3d_Bbcasttime << endl;
cout << " localspgemm= " << mcl3d_localspgemmtime << endl;
cout << " SUMMAmergetime= "<< mcl3d_SUMMAmergetime << endl;
cout << " reductiontime= "<< mcl3d_reductiontime << endl;
cout << " 3dmergetime= "<< mcl3d_3dmergetime << endl;
cout << "Prune: " << mcl_kselecttime + mcl_prunecolumntime << endl;
cout << " kselect= " << mcl_kselecttime << endl;
cout << " prunecolumn= " << mcl_prunecolumntime << endl;
cout << "Inflation " << tInflate << endl;
cout << "Component: " << tcc << endl;
cout << "File I/O: " << tIO << endl;
cout << "=================================================" << endl;
}
}
#endif
return cclabels;
}
template <typename IT, typename NT, typename DER>
void Symmetricize(SpParMat<IT,NT,DER> & A)
{
SpParMat<IT,NT,DER> AT = A;
AT.Transpose();
if(!(AT == A))
{
SpParHelper::Print("Symmatricizing an unsymmetric input matrix.\n");
A += AT;
}
}
template <typename GIT, typename LIT, typename NT>
void MainBody(HipMCLParam & param)
{
SpParMat<GIT,NT, SpDCCols < LIT, NT >> A(MPI_COMM_WORLD); // construct object
FullyDistVec<GIT, array<char, MAXVERTNAME> > vtxLabels(A.getcommgrid());
// read file
SpParHelper::Print("Reading input file......\n");
double tIO1 = MPI_Wtime();
if(param.isInputMM)
A.ParallelReadMM(param.ifilename, param.base, maximum<NT>()); // if base=0, then it is implicitly converted to Boolean false
else // default labeled triples format
vtxLabels = A.ReadGeneralizedTuples(param.ifilename, maximum<NT>());
tIO = MPI_Wtime() - tIO1;
ostringstream outs;
outs << " : took " << tIO << " seconds" << endl;
SpParHelper::Print(outs.str());
// Symmetricize the matrix only if needed
Symmetricize(A);
double balance = A.LoadImbalance();
outs.str("");
outs.clear();
GIT nnz = A.getnnz();
GIT nv = A.getnrow();
outs << "Number of vertices: " << nv << " number of edges: "<< nnz << endl;
outs << "Load balance: " << balance << endl;
SpParHelper::Print(outs.str());
if(param.show)
{
A.PrintInfo();
}
#ifdef TIMING
mcl_Abcasttime = 0;
mcl_Bbcasttime = 0;
mcl_localspgemmtime = 0;
mcl_multiwaymergetime = 0;
mcl_kselecttime = 0;
mcl_prunecolumntime = 0;
#endif
double tstart = MPI_Wtime();
// Run HipMCL
FullyDistVec<GIT, GIT> culstLabels = HipMCL(A, param);
//culstLabels.ParallelWrite(param.ofilename, param.base); // clusters are always numbered 0-based
if(param.isInputMM)
WriteMCLClusters(param.ofilename, culstLabels, param.base);
else
WriteMCLClusters(param.ofilename, culstLabels, vtxLabels);
GIT nclusters = culstLabels.Reduce(maximum<GIT>(), (GIT) 0 ) ;
nclusters ++; // because of zero based indexing for clusters
double tend = MPI_Wtime();
stringstream s2;
s2 << "Number of clusters: " << nclusters << endl;
s2 << "Total time: " << (tend-tstart) << endl;
s2 << "=================================================\n" << endl ;
SpParHelper::Print(s2.str());
}
int main(int argc, char* argv[])
{
int provided;
MPI_Init_thread(&argc, &argv, MPI_THREAD_SERIALIZED, &provided);
if (provided < MPI_THREAD_SERIALIZED)
{
printf("ERROR: The MPI library does not have MPI_THREAD_SERIALIZED support\n");
MPI_Abort(MPI_COMM_WORLD, 1);
}
int nthreads = 1;
#ifdef THREADED
#pragma omp parallel
{
nthreads = omp_get_num_threads();
}
#endif
int nprocs, myrank;
MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
HipMCLParam param;
// initialize parameters to default values
InitParam(param);
// Populate parameters from command line options
ProcessParam(argc, argv, param);
// check if mandatory arguments are provided
if(param.ifilename=="" || param.inflation == 0.0)
{
SpParHelper::Print("Required options are missing.\n");
ShowOptions();
MPI_Finalize();
return -1;
}
// show parameters used to run HipMCL
ShowParam(param);
if(param.perProcessMem==0)
{
if(myrank == 0)
{
cout << "******** Number of phases will not be estimated as -per-process-mem option is not supplied. It is highly recommended that you provide -per-process-mem option for large-scale runs. *********** " << endl;
}
}
{
if(param.isDoublePrecision)
{
if(param.is64bInt) // default case
MainBody<int64_t, int64_t, double>(param);
else
MainBody<int64_t, int32_t, double>(param);
}
else if(param.is64bInt)
MainBody<int64_t, int64_t, float>(param);
else
MainBody<int64_t, int32_t, float>(param);
}
// make sure the destructors for all objects are called before MPI::Finalize()
MPI_Finalize();
return 0;
}
|