1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
|
#ifdef THREADED
#ifndef _OPENMP
#define _OPENMP // should be defined before any COMBBLAS header is included
#endif
#include <omp.h>
#endif
#include "CombBLAS/CombBLAS.h"
#include <mpi.h>
#include <sys/time.h>
#include <iostream>
#include <functional>
#include <algorithm>
#include <vector>
#include <string>
#include <sstream>
#define EDGEFACTOR 16
#ifdef DETERMINISTIC
MTRand GlobalMT(1);
#else
MTRand GlobalMT; // generate random numbers with Mersenne Twister
#endif
double cblas_alltoalltime;
double cblas_allgathertime;
double cblas_localspmvtime;
double cblas_mergeconttime;
double cblas_transvectime;
using namespace std;
using namespace combblas;
int threads, processors;
string base_filename;
template <typename PARMAT>
void Symmetricize(PARMAT & A)
{
// boolean addition is practically a "logical or"
// therefore this doesn't destruct any links
PARMAT AT = A;
AT.Transpose();
AT.RemoveLoops(); // not needed for boolean matrices, but no harm in keeping it
A += AT;
}
struct VertexType
{
public:
VertexType(int64_t ord=-1, int64_t deg=-1){order=ord; degree = deg;};
friend bool operator<(const VertexType & vtx1, const VertexType & vtx2 )
{
if(vtx1.order==vtx2.order) return vtx1.degree < vtx2.degree;
else return vtx1.order<vtx2.order;
};
friend bool operator<=(const VertexType & vtx1, const VertexType & vtx2 )
{
if(vtx1.order==vtx2.order) return vtx1.degree <= vtx2.degree;
else return vtx1.order<vtx2.order;
};
friend bool operator>(const VertexType & vtx1, const VertexType & vtx2 )
{
if(vtx1.order==vtx2.order) return vtx1.degree > vtx2.degree;
else return vtx1.order>vtx2.order;
};
friend bool operator>=(const VertexType & vtx1, const VertexType & vtx2 )
{
if(vtx1.order==vtx2.order) return vtx1.degree >= vtx2.degree;
else return vtx1.order>vtx2.order;
//if(vtx1.order==vtx2.order) return vtx1.degree <= vtx2.degree;
//else return vtx1.order<vtx2.order;
};
friend bool operator==(const VertexType & vtx1, const VertexType & vtx2 ){return vtx1.order==vtx2.order & vtx1.degree==vtx2.degree;};
friend ostream& operator<<(ostream& os, const VertexType & vertex ){os << "(" << vertex.order << "," << vertex.degree << ")"; return os;};
//private:
int64_t order;
int64_t degree;
};
struct SelectMinSR
{
typedef int64_t T_promote;
static T_promote id(){ return -1; };
static bool returnedSAID() { return false; }
//static MPI_Op mpi_op() { return MPI_MIN; };
static T_promote add(const T_promote & arg1, const T_promote & arg2)
{
return std::min(arg1, arg2);
}
static T_promote multiply(const bool & arg1, const T_promote & arg2)
{
return arg2;
}
static void axpy(bool a, const T_promote & x, T_promote & y)
{
y = std::min(y, x);
}
};
typedef SpParMat < int64_t, bool, SpDCCols<int64_t,bool> > Par_DCSC_Bool;
typedef SpParMat < int64_t, int64_t, SpDCCols<int64_t, int64_t> > Par_DCSC_int64_t;
typedef SpParMat < int64_t, double, SpDCCols<int64_t, double> > Par_DCSC_Double;
typedef SpParMat < int64_t, bool, SpCCols<int64_t,bool> > Par_CSC_Bool;
FullyDistSpVec<int64_t, int64_t> getOrder(FullyDistSpVec<int64_t, VertexType> &fringeRow, int64_t startLabel, int64_t endLabel)
{
int myrank, nprocs;
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
vector<int64_t> lind = fringeRow.GetLocalInd ();
vector<VertexType> lnum = fringeRow.GetLocalNum ();
int64_t ploclen = lind.size();
int64_t nparents = endLabel - startLabel + 1;
int64_t perproc = nparents/nprocs;
int * rdispls = new int[nprocs+1];
int * recvcnt = new int[nprocs];
int * sendcnt = new int[nprocs](); // initialize to 0
int * sdispls = new int[nprocs+1];
MPI_Barrier(MPI_COMM_WORLD);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int64_t k=0; k < ploclen; ++k)
{
int64_t temp = lnum[k].order-startLabel;
int owner;
if(perproc==0 || temp/perproc > nprocs-1)
owner = nprocs-1;
else
owner = temp/perproc;
#ifdef _OPENMP
__sync_fetch_and_add(&sendcnt[owner], 1);
#else
sendcnt[owner]++;
#endif
}
MPI_Barrier(MPI_COMM_WORLD);
MPI_Alltoall(sendcnt, 1, MPI_INT, recvcnt, 1, MPI_INT, MPI_COMM_WORLD); // share the request counts
sdispls[0] = 0;
rdispls[0] = 0;
for(int i=0; i<nprocs; ++i)
{
sdispls[i+1] = sdispls[i] + sendcnt[i];
rdispls[i+1] = rdispls[i] + recvcnt[i];
}
int64_t * datbuf1 = new int64_t[ploclen];
int64_t * datbuf2 = new int64_t[ploclen];
int64_t * indbuf = new int64_t[ploclen];
int *count = new int[nprocs](); //current position
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int64_t i=0; i < ploclen; ++i)
{
int64_t temp = lnum[i].order-startLabel;
int owner;
if(perproc==0 || temp/perproc > nprocs-1)
owner = nprocs-1;
else
owner = temp/perproc;
int id;
#ifdef _OPENMP
id = sdispls[owner] + __sync_fetch_and_add(&count[owner], 1);
#else
id = sdispls[owner] + count[owner];
count[owner]++;
#endif
datbuf1[id] = temp;
datbuf2[id] = lnum[i].degree;
indbuf[id] = lind[i] + fringeRow.LengthUntil();
}
delete [] count;
int64_t totrecv = rdispls[nprocs];
int64_t * recvdatbuf1 = new int64_t[totrecv];
int64_t * recvdatbuf2 = new int64_t[totrecv];
MPI_Alltoallv(datbuf1, sendcnt, sdispls, MPIType<int64_t>(), recvdatbuf1, recvcnt, rdispls, MPIType<int64_t>(), MPI_COMM_WORLD);
delete [] datbuf1;
MPI_Alltoallv(datbuf2, sendcnt, sdispls, MPIType<int64_t>(), recvdatbuf2, recvcnt, rdispls, MPIType<int64_t>(), MPI_COMM_WORLD);
delete [] datbuf2;
int64_t * recvindbuf = new int64_t[totrecv];
MPI_Alltoallv(indbuf, sendcnt, sdispls, MPIType<int64_t>(), recvindbuf, recvcnt, rdispls, MPIType<int64_t>(), MPI_COMM_WORLD);
delete [] indbuf;
tuple<int64_t,int64_t, int64_t>* tosort = static_cast<tuple<int64_t,int64_t, int64_t>*> (::operator new (sizeof(tuple<int64_t,int64_t, int64_t>)*totrecv));
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i=0; i<totrecv; ++i)
{
tosort[i] = make_tuple(recvdatbuf1[i], recvdatbuf2[i], recvindbuf[i]);
}
#if defined(GNU_PARALLEL) && defined(_OPENMP)
__gnu_parallel::sort(tosort, tosort+totrecv);
#else
std::sort(tosort, tosort+totrecv);
#endif
// send order back
int * sendcnt1 = new int[nprocs]();
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int64_t k=0; k < totrecv; ++k)
{
int64_t locind;
int owner = fringeRow.Owner(get<2>(tosort[k]), locind);
#ifdef _OPENMP
__sync_fetch_and_add(&sendcnt1[owner], 1);
#else
sendcnt1[owner]++;
#endif
}
MPI_Alltoall(sendcnt1, 1, MPI_INT, recvcnt, 1, MPI_INT, MPI_COMM_WORLD); // share the request counts
sdispls[0] = 0;
rdispls[0] = 0;
for(int i=0; i<nprocs; ++i)
{
sdispls[i+1] = sdispls[i] + sendcnt1[i];
rdispls[i+1] = rdispls[i] + recvcnt[i];
}
vector<int64_t> sortperproc (nprocs);
sortperproc[myrank] = totrecv;
MPI_Allgather(MPI_IN_PLACE, 1, MPIType<int64_t>(), sortperproc.data(), 1, MPIType<int64_t>(), MPI_COMM_WORLD);
vector<int64_t> disp(nprocs+1);
disp[0] = 0;
for(int i=0; i<nprocs; ++i)
{
disp[i+1] = disp[i] + sortperproc[i];
}
ploclen = totrecv;
int64_t * datbuf = new int64_t[ploclen];
indbuf = new int64_t[ploclen];
count = new int[nprocs](); //current position
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int64_t i=0; i < ploclen; ++i)
{
int64_t locind;
int owner = fringeRow.Owner(get<2>(tosort[i]), locind);
int id;
#ifdef _OPENMP
id = sdispls[owner] + __sync_fetch_and_add(&count[owner], 1);
#else
id = sdispls[owner] + count[owner];
count[owner]++;
#endif
datbuf[id] = i + disp[myrank] + endLabel + 1;
//cout << datbuf[id] << endl;
indbuf[id] = locind;
}
delete [] count;
totrecv = rdispls[nprocs];
vector<int64_t> recvdatbuf3 (totrecv);
MPI_Alltoallv(datbuf, sendcnt1, sdispls, MPIType<int64_t>(), recvdatbuf3.data(), recvcnt, rdispls, MPIType<int64_t>(), MPI_COMM_WORLD);
delete [] datbuf;
vector<int64_t> recvindbuf3 (totrecv);
MPI_Alltoallv(indbuf, sendcnt1, sdispls, MPIType<int64_t>(), recvindbuf3.data(), recvcnt, rdispls, MPIType<int64_t>(), MPI_COMM_WORLD);
delete [] indbuf;
FullyDistSpVec<int64_t, int64_t> order(fringeRow.getcommgrid(), fringeRow.TotalLength(), recvindbuf3, recvdatbuf3);
DeleteAll(recvindbuf, recvdatbuf1, recvdatbuf2);
DeleteAll(sdispls, rdispls, sendcnt, sendcnt1, recvcnt);
::operator delete(tosort);
return order;
}
double torderSpMV=0, torderSort=0, torderOther=0;
// perform ordering from a pseudo peripheral vertex
template <typename PARMAT>
void RCMOrder(PARMAT & A, int64_t source, FullyDistVec<int64_t, int64_t>& order, int64_t startOrder, FullyDistVec<int64_t, int64_t> degrees, PreAllocatedSPA<int64_t>& SPA)
{
int myrank;
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
double tSpMV=0, tOrder, tOther, tSpMV1, tsort=0, tsort1;
tOrder = MPI_Wtime();
int64_t nv = A.getnrow();
FullyDistSpVec<int64_t, int64_t> fringe(A.getcommgrid(), nv );
order.SetElement(source, startOrder);
fringe.SetElement(source, startOrder);
int64_t curOrder = startOrder+1;
if(myrank == 0) cout << " Computing the RCM ordering:" << endl;
int64_t startLabel = startOrder;
int64_t endLabel = startOrder;
while(startLabel <= endLabel) // continue until the frontier is empty
{
fringe = EWiseApply<int64_t>(fringe, order,
[](int64_t parent_order, int64_t ord){return ord;},
[](int64_t parent_order, int64_t ord){return true;},
false, (int64_t) -1);
tSpMV1 = MPI_Wtime();
SpMV<SelectMinSR>(A, fringe, fringe, false, SPA);
tSpMV += MPI_Wtime() - tSpMV1;
fringe = EWiseMult(fringe, order, true, (int64_t) -1);
FullyDistSpVec<int64_t, VertexType> fringeRow = EWiseApply<VertexType>(fringe, degrees,
[](int64_t parent_order, int64_t degree){return VertexType(parent_order, degree);},
[](int64_t parent_order, int64_t degree){return true;},
false, (int64_t) -1);
tsort1 = MPI_Wtime();
FullyDistSpVec<int64_t, int64_t> levelOrder = getOrder(fringeRow, startLabel, endLabel);
tsort += MPI_Wtime()-tsort1;
order.Set(levelOrder);
startLabel = endLabel + 1;
endLabel += fringe.getnnz();
}
tOrder = MPI_Wtime() - tOrder;
tOther = tOrder - tSpMV - tsort;
if(myrank == 0)
{
cout << " Total time: " << tOrder << " seconds [SpMV: " << tSpMV << ", sorting: " << tsort << ", other: " << tOther << "]" << endl << endl;
}
torderSpMV+=tSpMV; torderSort+=tsort; torderOther+=tOther;
}
template <typename PARMAT>
int64_t PseudoPeripheralVertex(PARMAT & A, FullyDistSpVec<int64_t, pair<int64_t, int64_t>>& unvisitedVertices, FullyDistVec<int64_t, int64_t> degrees, PreAllocatedSPA<int64_t>& SPA)
{
int myrank;
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
double tpvSpMV=0, tpvOther=0;
double tstart = MPI_Wtime();
int64_t prevLevel=-1, curLevel=0; // initialized just to make the first iteration going
// Select a minimum-degree unvisited vertex as the initial source
pair<int64_t, int64_t> mindegree_vertex = unvisitedVertices.Reduce(minimum<pair<int64_t, int64_t> >(), make_pair(LLONG_MAX, (int64_t)-1));
int64_t source = mindegree_vertex.second;
//level structure in the current BFS tree
//we are not using this information. Currently it is serving as visited flag
FullyDistVec<int64_t, int64_t> level ( A.getcommgrid(), A.getnrow(), (int64_t) -1);
int iterations = 0;
double tSpMV=0, tOther=0, tSpMV1;
if(myrank == 0) cout << " Computing a pseudo-peripheral vertex:" << endl;
while(curLevel > prevLevel)
{
double tItr = MPI_Wtime();
prevLevel = curLevel;
FullyDistSpVec<int64_t, int64_t> fringe(A.getcommgrid(), A.getnrow() );
level = (int64_t)-1; // reset level structure in every iteration
level.SetElement(source, 1); // place source at level 1
fringe.SetElement(source, 1); // include source to the initial fringe
curLevel = 2;
while(fringe.getnnz() > 0) // continue until the frontier is empty
{
tSpMV1 = MPI_Wtime();
SpMV<SelectMinSR>(A, fringe, fringe, false, SPA);
tSpMV += MPI_Wtime() - tSpMV1;
fringe = EWiseMult(fringe, level, true, (int64_t) -1);
// set value to the current level
fringe=curLevel;
curLevel++;
level.Set(fringe);
}
curLevel = curLevel-2;
// last non-empty level (we can avoid this by keeping the last nonempty fringe)
fringe = level.Find(curLevel);
fringe.setNumToInd();
// find a minimum degree vertex in the last level
FullyDistSpVec<int64_t, pair<int64_t, int64_t>> fringe_degree =
EWiseApply<pair<int64_t, int64_t>>(fringe, degrees,
[](int64_t vtx, int64_t deg){return make_pair(deg, vtx);},
[](int64_t vtx, int64_t deg){return true;},
false, (int64_t) -1);
mindegree_vertex = fringe_degree.Reduce(minimum<pair<int64_t, int64_t> >(), make_pair(LLONG_MAX, (int64_t)-1));
if (curLevel > prevLevel)
source = mindegree_vertex.second;
iterations++;
if(myrank == 0)
{
cout <<" iteration: "<< iterations << " BFS levels: " << curLevel << " Time: " << MPI_Wtime() - tItr << " seconds." << endl;
}
}
// remove vertices in the current connected component
//unvisitedVertices = EWiseMult(unvisitedVertices, level, true, (int64_t) -1);
unvisitedVertices = EWiseApply<pair<int64_t, int64_t>>(unvisitedVertices, level,
[](pair<int64_t, int64_t> vtx, int64_t visited){return vtx;},
[](pair<int64_t, int64_t> vtx, int64_t visited){return visited==-1;},
false, make_pair((int64_t)-1, (int64_t)0));
tOther = MPI_Wtime() - tstart - tSpMV;
tpvSpMV += tSpMV;
tpvOther += tOther;
if(myrank == 0)
{
cout << " vertex " << source << " is a pseudo peripheral vertex" << endl;
cout << " pseudo diameter: " << curLevel << ", #iterations: "<< iterations << endl;
cout << " Total time: " << MPI_Wtime() - tstart << " seconds [SpMV: " << tSpMV << ", other: " << tOther << "]" << endl << endl;
}
return source;
}
template <typename PARMAT>
FullyDistVec<int64_t, int64_t> RCM(PARMAT & A, FullyDistVec<int64_t, int64_t> degrees, PreAllocatedSPA<int64_t>& SPA)
{
#ifdef TIMING
cblas_allgathertime = 0;
cblas_alltoalltime = 0;
cblas_mergeconttime = 0;
cblas_transvectime = 0;
cblas_localspmvtime = 0;
#endif
int myrank, nprocs;
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
FullyDistSpVec<int64_t, int64_t> unvisited ( A.getcommgrid(), A.getnrow());
unvisited.iota(A.getnrow(), (int64_t) 0); // index and values become the same
// The list of unvisited vertices. The value is (degree, vertex index) pair
FullyDistSpVec<int64_t, pair<int64_t, int64_t>> unvisitedVertices =
EWiseApply<pair<int64_t, int64_t>>(unvisited, degrees,
[](int64_t vtx, int64_t deg){return make_pair(deg, vtx);},
[](int64_t vtx, int64_t deg){return true;},
false, (int64_t) -1);
// The RCM order will be stored here
FullyDistVec<int64_t, int64_t> rcmorder ( A.getcommgrid(), A.getnrow(), (int64_t) -1);
int cc = 1; // current connected component
int64_t numUnvisited = unvisitedVertices.getnnz();
while(numUnvisited>0) // for each connected component
{
if(myrank==0) cout << "Connected component: " << cc++ << endl;
// Get a pseudo-peripheral vertex to start the RCM algorithm
int64_t source = PseudoPeripheralVertex(A, unvisitedVertices, degrees,SPA);
// Get the RCM ordering in this connected component
int64_t curOrder = A.getnrow() - numUnvisited;
RCMOrder(A, source, rcmorder, curOrder, degrees, SPA);
numUnvisited = unvisitedVertices.getnnz();
}
#ifdef TIMING
double *td_ag_all, *td_a2a_all, *td_tv_all, *td_mc_all, *td_spmv_all;
if(myrank == 0)
{
td_ag_all = new double[nprocs];
td_a2a_all = new double[nprocs];
td_tv_all = new double[nprocs];
td_mc_all = new double[nprocs];
td_spmv_all = new double[nprocs];
}
MPI_Gather(&cblas_allgathertime, 1, MPI_DOUBLE, td_ag_all, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gather(&cblas_alltoalltime, 1, MPI_DOUBLE, td_a2a_all, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gather(&cblas_transvectime, 1, MPI_DOUBLE, td_tv_all, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gather(&cblas_mergeconttime, 1, MPI_DOUBLE, td_mc_all, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gather(&cblas_localspmvtime, 1, MPI_DOUBLE, td_spmv_all, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
double td_ag_all1=0, td_a2a_all1=0, td_tv_all1=0, td_mc_all1=0,td_spmv_all1 = 0;
if(myrank == 0)
{
vector<double> total_time(nprocs, 0);
for(int i=0; i< nprocs; ++i) // find the mean performing guy
total_time[i] += td_ag_all[i] + td_a2a_all[i] + td_tv_all[i] + td_mc_all[i] + td_spmv_all[i];
// order
vector<pair<double, int>> tosort;
for(int i=0; i<nprocs; i++) tosort.push_back(make_pair(total_time[i], i));
sort(tosort.begin(), tosort.end());
//vector<int> permutation = SpHelper::order(total_time);
vector<int> permutation(nprocs);
for(int i=0; i<nprocs; i++) permutation[i] = tosort[i].second;
int smallest = permutation[0];
int largest = permutation[nprocs-1];
int median = permutation[nprocs/2];
cout << "------ Detail timing --------" << endl;
cout << "TOTAL (accounted) MEAN: " << accumulate( total_time.begin(), total_time.end(), 0.0 )/ static_cast<double> (nprocs) << endl;
cout << "TOTAL (accounted) MAX: " << total_time[0] << endl;
cout << "TOTAL (accounted) MIN: " << total_time[nprocs-1] << endl;
cout << "TOTAL (accounted) MEDIAN: " << total_time[nprocs/2] << endl;
cout << "-------------------------------" << endl;
cout << "allgather median: " << td_ag_all[median] << endl;
cout << "all2all median: " << td_a2a_all[median] << endl;
cout << "transposevector median: " << td_tv_all[median] << endl;
cout << "mergecontributions median: " << td_mc_all[median] << endl;
cout << "spmsv median: " << td_spmv_all[median] << endl;
cout << "-------------------------------" << endl;
td_ag_all1=td_ag_all[median]; td_a2a_all1=td_a2a_all[median];
td_tv_all1=td_tv_all[median]; td_mc_all1=td_mc_all[median];
td_spmv_all1 = td_spmv_all[median];
cout << "allgather fastest: " << td_ag_all[smallest] << endl;
cout << "all2all fastest: " << td_a2a_all[smallest] << endl;
cout << "transposevector fastest: " << td_tv_all[smallest] << endl;
cout << "mergecontributions fastest: " << td_mc_all[smallest] << endl;
cout << "spmsv fastest: " << td_spmv_all[smallest] << endl;
cout << "-------------------------------" << endl;
cout << "allgather slowest: " << td_ag_all[largest] << endl;
cout << "all2all slowest: " << td_a2a_all[largest] << endl;
cout << "transposevector slowest: " << td_tv_all[largest] << endl;
cout << "mergecontributions slowest: " << td_mc_all[largest] << endl;
cout << "spmsv slowest: " << td_spmv_all[largest] << endl;
}
if(myrank == 0)
{
cout << "summary statistics" << endl;
cout << base_filename << " " << processors << " " << threads << " " << processors * threads << " "<< torderSpMV << " "<< torderSort<< " "<< torderOther<< " "<< td_ag_all1 << " "<< td_a2a_all1 << " "<< td_tv_all1 << " "<< td_mc_all1 << " "<< td_spmv_all1 << " "<< endl;
}
#endif
return rcmorder;
}
int main(int argc, char* argv[])
{
int provided;
MPI_Init_thread(&argc, &argv, MPI_THREAD_SERIALIZED, &provided);
if (provided < MPI_THREAD_SERIALIZED)
{
printf("ERROR: The MPI library does not have MPI_THREAD_SERIALIZED support\n");
MPI_Abort(MPI_COMM_WORLD, 1);
}
int nprocs, myrank;
MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
if(argc < 3)
{
if(myrank == 0)
{
cout << "Usage: ./rcm <rmat|er|input> <scale|filename> " << "-permute" << " -savercm" << endl;
cout << "Example with a user supplied matrix:" << endl;
cout << " mpirun -np 4 ./rcm input a.mtx" << endl;
cout << "Example with a user supplied matrix (pre-permute the input matrix for load balance):" << endl;
cout << " mpirun -np 4 ./rcm input a.mtx -permute " << endl;
cout << "Example with a user supplied matrix (pre-permute the input matrix for load balance) & save rcm order to input_file_name.rcm.txt file:" << endl;
cout << " mpirun -np 4 ./rcm input a.mtx -permute -savercm" << endl;
cout << "Example with RMAT matrix: mpirun -np 4 ./rcm rmat 20" << endl;
cout << "Example with an Erdos-Renyi matrix: mpirun -np 4 ./rcm er 20" << endl;
}
MPI_Finalize();
return -1;
}
{
string filename="";
bool randpermute = false;
bool savercm = false;
for (int i = 1; i < argc; i++)
{
if (strcmp(argv[i],"-permute")==0)
randpermute = true;
if (strcmp(argv[i],"-savercm")==0)
savercm = true;
}
Par_DCSC_Bool * ABool;
ostringstream tinfo;
if(string(argv[1]) == string("input")) // input option
{
ABool = new Par_DCSC_Bool();
filename = argv[2];
tinfo.str("");
tinfo << "**** Reading input matrix: " << filename << " ******* " << endl;
base_filename = filename.substr(filename.find_last_of("/\\") + 1);
SpParHelper::Print(tinfo.str());
double t01 = MPI_Wtime();
ABool->ParallelReadMM(filename, true, maximum<bool>());
double t02 = MPI_Wtime();
Symmetricize(*ABool);
tinfo.str("");
tinfo << "matrix read and symmetricized " << endl;
tinfo << "Reader took " << t02-t01 << " seconds" << endl;
SpParHelper::Print(tinfo.str());
}
else if(string(argv[1]) == string("rmat"))
{
unsigned scale;
scale = static_cast<unsigned>(atoi(argv[2]));
double initiator[4] = {.57, .19, .19, .05};
DistEdgeList<int64_t> * DEL = new DistEdgeList<int64_t>();
DEL->GenGraph500Data(initiator, scale, EDGEFACTOR, true, false );
MPI_Barrier(MPI_COMM_WORLD);
ABool = new Par_DCSC_Bool(*DEL, false);
Symmetricize(*ABool);
delete DEL;
}
else if(string(argv[1]) == string("er"))
{
unsigned scale;
scale = static_cast<unsigned>(atoi(argv[2]));
double initiator[4] = {.25, .25, .25, .25};
DistEdgeList<int64_t> * DEL = new DistEdgeList<int64_t>();
DEL->GenGraph500Data(initiator, scale, EDGEFACTOR, true, false );
MPI_Barrier(MPI_COMM_WORLD);
ABool = new Par_DCSC_Bool(*DEL, false);
Symmetricize(*ABool);
delete DEL;
}
else
{
SpParHelper::Print("Unknown input option\n");
MPI_Finalize();
return -1;
}
Par_DCSC_Bool ABoolOld(ABool->getcommgrid());
// needed for random permutation
FullyDistVec<int64_t, int64_t> randp( ABool->getcommgrid());
if(randpermute && string(argv[1]) == string("input")) // do this only for user provided matrices
{
if(ABool->getnrow() == ABool->getncol())
{
ABoolOld = *ABool; // create a copy for bandwidth computation
randp.iota(ABool->getnrow(), 0);
randp.RandPerm();
(*ABool)(randp,randp,true);// in-place permute to save memory
SpParHelper::Print("Matrix is randomly permuted for load balance.\n");
}
else
{
SpParHelper::Print("Rectangular matrix: Can not apply symmetric permutation.\n");
}
}
ABool->RemoveLoops();
Par_CSC_Bool * ABoolCSC;
FullyDistVec<int64_t, int64_t> degrees ( ABool->getcommgrid());
float balance;
balance = ABool->LoadImbalance();
ABool->Reduce(degrees, Column, plus<int64_t>(), static_cast<int64_t>(0));
ABoolCSC = new Par_CSC_Bool(*ABool);
int nthreads = 1;
#ifdef THREADED
#pragma omp parallel
{
nthreads = omp_get_num_threads();
}
#endif
threads = nthreads;
processors = nprocs;
ostringstream outs;
outs << "--------------------------------------" << endl;
outs << "Number of MPI proceses: " << nprocs << endl;
outs << "Number of threads per procese: " << nthreads << endl;
outs << "Load balance: " << balance << endl;
outs << "--------------------------------------" << endl;
SpParHelper::Print(outs.str());
// create Pre allocated SPA for SpMSpV
PreAllocatedSPA<int64_t> SPA(ABoolCSC->seq(), nthreads*4);
// Compute the RCM ordering
FullyDistVec<int64_t, int64_t> rcmorder = RCM(*ABoolCSC, degrees, SPA);
FullyDistVec<int64_t, int64_t> reverseOrder = rcmorder;
// comment out the next two lines if you want the Cuthill-McKee ordering
reverseOrder= rcmorder.TotalLength();
reverseOrder -= rcmorder;
//revert random permutation if applied before
if(randpermute==true && randp.TotalLength() >0)
{
// inverse permutation
FullyDistVec<int64_t, int64_t>invRandp = randp.sort();
reverseOrder = reverseOrder(invRandp);
}
// Write the RCM ordering
// TODO: should we save the permutation instead?
if(savercm && filename!="")
{
string ofName = filename + ".rcm.txt";
reverseOrder.ParallelWrite(ofName, 1, false);
}
// get permutation from the ordering
// sort returns permutation from ordering
// and make the original vector a sequence (like iota)
// TODO: Can we use invert() ?
FullyDistVec<int64_t, int64_t>rcmorder1 = reverseOrder.sort();
// Permute the original matrix with the RCM order
// this part is not timed as it is needed for sanity check only
if(randpermute==true && randp.TotalLength() >0)
{
int64_t bw_before1 = ABoolOld.Bandwidth();
int64_t bw_before2 = ABool->Bandwidth();
ABoolOld(rcmorder1,rcmorder1,true);
int64_t bw_after = ABoolOld.Bandwidth();
ostringstream outs1;
outs1 << "Original Bandwidth: " << bw_before1 << endl;
outs1 << "Bandwidth after randomly permuting the matrix: " << bw_before2 << endl;
outs1 << "Bandwidth after the matrix is permuted by RCM: " << bw_after << endl << endl;
SpParHelper::Print(outs1.str());
}
else
{
int64_t bw_before1 = ABool->Bandwidth();
(*ABool)(rcmorder1,rcmorder1,true);
int64_t bw_after = ABool->Bandwidth();
ostringstream outs1;
outs1 << "Original Bandwidth: " << bw_before1 << endl;
outs1 << "Bandwidth after the matrix is permuted by RCM: " << bw_after << endl << endl;;
SpParHelper::Print(outs1.str());
}
delete ABool;
delete ABoolCSC;
}
MPI_Finalize();
return 0;
}
|