1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
#define DETERMINISTIC
#include "CombBLAS/CombBLAS.h"
#include <mpi.h>
#include <sys/time.h>
#include <iostream>
#include <functional>
#include <algorithm>
#include <vector>
#include <string>
#include <sstream>
#ifdef THREADED
#ifndef _OPENMP
#define _OPENMP
#endif
#endif
#ifdef _OPENMP
#include <omp.h>
#endif
double cblas_alltoalltime;
double cblas_allgathertime;
double cblas_mergeconttime;
double cblas_transvectime;
double cblas_localspmvtime;
#ifdef _OPENMP
int cblas_splits = omp_get_max_threads();
#else
int cblas_splits = 1;
#endif
#define ITERS 16
#define EDGEFACTOR 16
using namespace std;
using namespace combblas;
// 64-bit floor(log2(x)) function
// note: least significant bit is the "zeroth" bit
// pre: v > 0
unsigned int highestbitset(uint64_t v)
{
// b in binary is {10,1100, 11110000, 1111111100000000 ...}
const uint64_t b[] = {0x2ULL, 0xCULL, 0xF0ULL, 0xFF00ULL, 0xFFFF0000ULL, 0xFFFFFFFF00000000ULL};
const unsigned int S[] = {1, 2, 4, 8, 16, 32};
int i;
unsigned int r = 0; // result of log2(v) will go here
for (i = 5; i >= 0; i--)
{
if (v & b[i]) // highestbitset is on the left half (i.e. v > S[i] for sure)
{
v >>= S[i];
r |= S[i];
}
}
return r;
}
template <class T>
bool from_string(T & t, const string& s, std::ios_base& (*f)(std::ios_base&))
{
istringstream iss(s);
return !(iss >> f >> t).fail();
}
template <typename PARMAT>
void Symmetricize(PARMAT & A)
{
// boolean addition is practically a "logical or"
// therefore this doesn't destruct any links
PARMAT AT = A;
AT.Transpose();
A += AT;
}
/**
* Binary function to prune the previously discovered vertices from the current frontier
* When used with EWiseApply(SparseVec V, DenseVec W,...) we get the 'exclude = false' effect of EWiseMult
**/
struct prunediscovered: public std::binary_function<int64_t, int64_t, int64_t >
{
int64_t operator()(int64_t x, const int64_t & y) const
{
return ( y == -1 ) ? x: -1;
}
};
static void MPI_randuniq(void * invec, void * inoutvec, int * len, MPI_Datatype *datatype)
{
RandReduce<int64_t> RR;
int64_t * inveccast = (int64_t *) invec;
int64_t * inoutveccast = (int64_t *) inoutvec;
for (int i=0; i<*len; i++ )
inoutveccast[i] = RR(inveccast[i], inoutveccast[i]);
}
int main(int argc, char* argv[])
{
int nprocs, myrank;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
if(argc < 2)
{
if(myrank == 0)
{
cout << "Usage: ./scbfs <Scale>" << endl;
cout << "Example: mpirun -np 4 ./scbfs 20" << endl;
}
MPI_Finalize();
return -1;
}
{
typedef SelectMaxSRing<bool, int32_t> SR;
typedef SpParMat < int64_t, bool, SpDCCols<int64_t,bool> > PSpMat_Bool;
typedef SpParMat < int64_t, bool, SpDCCols<int32_t,bool> > PSpMat_s32p64; // sequentially use 32-bits for local matrices, but parallel semantics are 64-bits
typedef SpParMat < int64_t, int, SpDCCols<int32_t,int> > PSpMat_s32p64_Int; // similarly mixed, but holds integers as upposed to booleans
typedef SpParMat < int64_t, int64_t, SpDCCols<int64_t,int64_t> > PSpMat_Int64;
// Declare objects
PSpMat_Bool A;
PSpMat_s32p64 Aeff;
FullyDistVec<int64_t, int64_t> degrees; // degrees of vertices (including multi-edges and self-loops)
FullyDistVec<int64_t, int64_t> nonisov; // id's of non-isolated (connected) vertices
unsigned scale;
OptBuf<int32_t, int64_t> optbuf; // let indices be 32-bits
scale = static_cast<unsigned>(atoi(argv[1]));
ostringstream outs;
outs << "Forcing scale to : " << scale << endl;
// this is an undirected graph, so A*x does indeed BFS
double initiator[4] = {.57, .19, .19, .05};
double t01 = MPI_Wtime();
double t02;
DistEdgeList<int64_t> * DEL = new DistEdgeList<int64_t>();
DEL->GenGraph500Data(initiator, scale, EDGEFACTOR, true, true ); // generate packed edges
SpParHelper::Print("Generated renamed edge lists\n");
t02 = MPI_Wtime();
ostringstream tinfo;
tinfo << "Generation took " << t02-t01 << " seconds" << endl;
SpParHelper::Print(tinfo.str());
// Start Kernel #1
MPI_Barrier(MPI_COMM_WORLD);
double t1 = MPI_Wtime();
// conversion from distributed edge list, keeps self-loops, sums duplicates
PSpMat_s32p64_Int * G = new PSpMat_s32p64_Int(*DEL, false);
delete DEL; // free memory before symmetricizing
SpParHelper::Print("Created Sparse Matrix (with int32 local indices and values)\n");
MPI_Barrier(MPI_COMM_WORLD);
double redts = MPI_Wtime();
G->Reduce(degrees, Row, plus<int64_t>(), static_cast<int64_t>(0)); // Identity is 0
MPI_Barrier(MPI_COMM_WORLD);
double redtf = MPI_Wtime();
ostringstream redtimeinfo;
redtimeinfo << "Calculated degrees in " << redtf-redts << " seconds" << endl;
SpParHelper::Print(redtimeinfo.str());
A = PSpMat_Bool(*G); // Convert to Boolean
delete G;
int64_t removed = A.RemoveLoops();
ostringstream loopinfo;
loopinfo << "Converted to Boolean and removed " << removed << " loops" << endl;
SpParHelper::Print(loopinfo.str());
A.PrintInfo();
FullyDistVec<int64_t, int64_t> * ColSums = new FullyDistVec<int64_t, int64_t>(A.getcommgrid());
FullyDistVec<int64_t, int64_t> * RowSums = new FullyDistVec<int64_t, int64_t>(A.getcommgrid());
A.Reduce(*ColSums, Column, plus<int64_t>(), static_cast<int64_t>(0));
A.Reduce(*RowSums, Row, plus<int64_t>(), static_cast<int64_t>(0));
SpParHelper::Print("Reductions done\n");
ColSums->EWiseApply(*RowSums, plus<int64_t>());
delete RowSums;
SpParHelper::Print("Intersection of colsums and rowsums found\n");
nonisov = ColSums->FindInds(bind2nd(greater<int64_t>(), 0)); // only the indices of non-isolated vertices
delete ColSums;
SpParHelper::Print("Found (and permuted) non-isolated vertices\n");
nonisov.RandPerm(); // so that A(v,v) is load-balanced (both memory and time wise)
A.PrintInfo();
#ifndef NOPERMUTE
A(nonisov, nonisov, true); // in-place permute to save memory
SpParHelper::Print("Dropped isolated vertices from input\n");
A.PrintInfo();
#endif
Aeff = PSpMat_s32p64(A); // Convert to 32-bit local integers
A.FreeMemory();
Symmetricize(Aeff); // A += A';
SpParHelper::Print("Symmetricized\n");
Aeff.OptimizeForGraph500(optbuf); // Should be called before threading is activated
#ifdef THREADED
ostringstream tinfo;
tinfo << "Threading activated with " << cblas_splits << " threads" << endl;
SpParHelper::Print(tinfo.str());
Aeff.ActivateThreading(cblas_splits);
#endif
Aeff.PrintInfo();
MPI_Barrier(MPI_COMM_WORLD);
double t2=MPI_Wtime();
ostringstream k1timeinfo;
k1timeinfo << (t2-t1) - (redtf-redts) << " seconds elapsed for Kernel #1" << endl;
SpParHelper::Print(k1timeinfo.str());
Aeff.PrintInfo();
float balance = Aeff.LoadImbalance();
ostringstream outs2;
outs2 << "Load balance: " << balance << endl;
SpParHelper::Print(outs2.str());
MPI_Barrier(MPI_COMM_WORLD);
// Now that every remaining vertex is non-isolated, randomly pick ITERS many of them as starting vertices
#ifndef NOPERMUTE
degrees = degrees(nonisov); // fix the degrees array too
degrees.PrintInfo("Degrees array");
#endif
// degrees.DebugPrint();
FullyDistVec<int64_t, int64_t> Cands(ITERS, 0);
double nver = (double) degrees.TotalLength();
#ifdef DETERMINISTIC
MTRand M(1);
#else
MTRand M; // generate random numbers with Mersenne Twister
#endif
vector<double> loccands(ITERS);
vector<int64_t> loccandints(ITERS);
if(myrank == 0)
{
for(int i=0; i<ITERS; ++i)
loccands[i] = M.rand();
copy(loccands.begin(), loccands.end(), ostream_iterator<double>(cout," ")); cout << endl;
transform(loccands.begin(), loccands.end(), loccands.begin(), bind2nd( multiplies<double>(), nver ));
for(int i=0; i<ITERS; ++i)
loccandints[i] = static_cast<int64_t>(loccands[i]);
copy(loccandints.begin(), loccandints.end(), ostream_iterator<double>(cout," ")); cout << endl;
}
MPI_Bcast(&(loccandints[0]), ITERS, MPIType<int64_t>(),0,MPI_COMM_WORLD);
for(int i=0; i<ITERS; ++i)
Cands.SetElement(i,loccandints[i]);
double MTEPS[ITERS]; double INVMTEPS[ITERS]; double TIMES[ITERS]; double EDGES[ITERS];
for(int i=0; i<ITERS; ++i)
{
// FullyDistVec ( shared_ptr<CommGrid> grid, IT globallen, NT initval);
FullyDistVec<int64_t, int64_t> parents ( Aeff.getcommgrid(), Aeff.getncol(), (int64_t) -1); // identity is -1
// FullyDistSpVec ( shared_ptr<CommGrid> grid, IT glen);
FullyDistSpVec<int64_t, int64_t> fringe(Aeff.getcommgrid(), Aeff.getncol()); // numerical values are stored 0-based
MPI_Barrier(MPI_COMM_WORLD);
double t1 = MPI_Wtime();
fringe.SetElement(Cands[i], Cands[i]);
int iterations = 0;
MPI_Op randreducempiop;
MPI_Op_create(MPI_randuniq, true, &randreducempiop);
while(fringe.getnnz() > 0)
{
fringe.setNumToInd();
fringe = SpMV(Aeff, fringe,optbuf); // SpMV with sparse vector (with indexisvalue flag preset), optimization enabled
fringe = EWiseMult(fringe, parents, true, (int64_t) -1); // clean-up vertices that already has parents
fringe.PrintInfo("Frontier");
auto singlechild = fringe.Uniq(RandReduce<int64_t>(), randreducempiop);
singlechild.PrintInfo("Single child frontier");
parents.Set(fringe);
iterations++;
}
MPI_Barrier(MPI_COMM_WORLD);
double t2 = MPI_Wtime();
FullyDistSpVec<int64_t, int64_t> parentsp = parents.Find(bind2nd(greater<int64_t>(), -1));
parentsp.Apply(myset<int64_t>(1));
// we use degrees on the directed graph, so that we don't count the reverse edges in the teps score
int64_t nedges = EWiseMult(parentsp, degrees, false, (int64_t) 0).Reduce(plus<int64_t>(), (int64_t) 0);
ostringstream outnew;
outnew << i << "th starting vertex was " << Cands[i] << endl;
outnew << "Number iterations: " << iterations << endl;
outnew << "Number of vertices found: " << parentsp.Reduce(plus<int64_t>(), (int64_t) 0) << endl;
outnew << "Number of edges traversed: " << nedges << endl;
outnew << "BFS time: " << t2-t1 << " seconds" << endl;
outnew << "MTEPS: " << static_cast<double>(nedges) / (t2-t1) / 1000000.0 << endl;
outnew << "Total communication (average so far): " << (cblas_allgathertime + cblas_alltoalltime) / (i+1) << endl;
TIMES[i] = t2-t1;
EDGES[i] = nedges;
MTEPS[i] = static_cast<double>(nedges) / (t2-t1) / 1000000.0;
SpParHelper::Print(outnew.str());
}
SpParHelper::Print("Finished\n");
ostringstream os;
sort(EDGES, EDGES+ITERS);
os << "--------------------------" << endl;
os << "Min nedges: " << EDGES[0] << endl;
os << "First Quartile nedges: " << (EDGES[(ITERS/4)-1] + EDGES[ITERS/4])/2 << endl;
os << "Median nedges: " << (EDGES[(ITERS/2)-1] + EDGES[ITERS/2])/2 << endl;
os << "Third Quartile nedges: " << (EDGES[(3*ITERS/4) -1 ] + EDGES[3*ITERS/4])/2 << endl;
os << "Max nedges: " << EDGES[ITERS-1] << endl;
double mean = accumulate( EDGES, EDGES+ITERS, 0.0 )/ ITERS;
vector<double> zero_mean(ITERS); // find distances to the mean
transform(EDGES, EDGES+ITERS, zero_mean.begin(), bind2nd( minus<double>(), mean ));
// self inner-product is sum of sum of squares
double deviation = inner_product( zero_mean.begin(),zero_mean.end(), zero_mean.begin(), 0.0 );
deviation = sqrt( deviation / (ITERS-1) );
os << "Mean nedges: " << mean << endl;
os << "STDDEV nedges: " << deviation << endl;
os << "--------------------------" << endl;
sort(TIMES,TIMES+ITERS);
os << "Min time: " << TIMES[0] << " seconds" << endl;
os << "First Quartile time: " << (TIMES[(ITERS/4)-1] + TIMES[ITERS/4])/2 << " seconds" << endl;
os << "Median time: " << (TIMES[(ITERS/2)-1] + TIMES[ITERS/2])/2 << " seconds" << endl;
os << "Third Quartile time: " << (TIMES[(3*ITERS/4)-1] + TIMES[3*ITERS/4])/2 << " seconds" << endl;
os << "Max time: " << TIMES[ITERS-1] << " seconds" << endl;
mean = accumulate( TIMES, TIMES+ITERS, 0.0 )/ ITERS;
transform(TIMES, TIMES+ITERS, zero_mean.begin(), bind2nd( minus<double>(), mean ));
deviation = inner_product( zero_mean.begin(),zero_mean.end(), zero_mean.begin(), 0.0 );
deviation = sqrt( deviation / (ITERS-1) );
os << "Mean time: " << mean << " seconds" << endl;
os << "STDDEV time: " << deviation << " seconds" << endl;
os << "--------------------------" << endl;
sort(MTEPS, MTEPS+ITERS);
os << "Min MTEPS: " << MTEPS[0] << endl;
os << "First Quartile MTEPS: " << (MTEPS[(ITERS/4)-1] + MTEPS[ITERS/4])/2 << endl;
os << "Median MTEPS: " << (MTEPS[(ITERS/2)-1] + MTEPS[ITERS/2])/2 << endl;
os << "Third Quartile MTEPS: " << (MTEPS[(3*ITERS/4)-1] + MTEPS[3*ITERS/4])/2 << endl;
os << "Max MTEPS: " << MTEPS[ITERS-1] << endl;
transform(MTEPS, MTEPS+ITERS, INVMTEPS, safemultinv<double>()); // returns inf for zero teps
double hteps = static_cast<double>(ITERS) / accumulate(INVMTEPS, INVMTEPS+ITERS, 0.0);
os << "Harmonic mean of MTEPS: " << hteps << endl;
transform(INVMTEPS, INVMTEPS+ITERS, zero_mean.begin(), bind2nd(minus<double>(), 1/hteps));
deviation = inner_product( zero_mean.begin(),zero_mean.end(), zero_mean.begin(), 0.0 );
deviation = sqrt( deviation / (ITERS-1) ) * (hteps*hteps); // harmonic_std_dev
os << "Harmonic standard deviation of MTEPS: " << deviation << endl;
SpParHelper::Print(os.str());
}
MPI_Finalize();
return 0;
}
|