1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
/****************************************************************/
/* Parallel Combinatorial BLAS Library (for Graph Computations) */
/* version 1.6 -------------------------------------------------*/
/* date: 6/15/2017 ---------------------------------------------*/
/* authors: Ariful Azad, Aydin Buluc --------------------------*/
/****************************************************************/
/*
Copyright (c) 2010-2017, The Regents of the University of California
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#define DETERMINISTIC
#include "CombBLAS/CombBLAS.h"
#include <mpi.h>
#include <sys/time.h>
#include <iostream>
#include <functional>
#include <algorithm>
#include <vector>
#include <string>
#include <sstream>
int cblas_splits;
double cblas_alltoalltime;
double cblas_allgathertime;
double cblas_mergeconttime;
double cblas_transvectime;
double cblas_localspmvtime;
#define ITERS 16
#define EDGEFACTOR 16
using namespace std;
using namespace combblas;
// 64-bit floor(log2(x)) function
// note: least significant bit is the "zeroth" bit
// pre: v > 0
unsigned int highestbitset(uint64_t v)
{
// b in binary is {10,1100, 11110000, 1111111100000000 ...}
const uint64_t b[] = {0x2ULL, 0xCULL, 0xF0ULL, 0xFF00ULL, 0xFFFF0000ULL, 0xFFFFFFFF00000000ULL};
const unsigned int S[] = {1, 2, 4, 8, 16, 32};
int i;
unsigned int r = 0; // result of log2(v) will go here
for (i = 5; i >= 0; i--)
{
if (v & b[i]) // highestbitset is on the left half (i.e. v > S[i] for sure)
{
v >>= S[i];
r |= S[i];
}
}
return r;
}
template <class T>
bool from_string(T & t, const string& s, std::ios_base& (*f)(std::ios_base&))
{
istringstream iss(s);
return !(iss >> f >> t).fail();
}
template <typename PARMAT>
void Symmetricize(PARMAT & A)
{
// boolean addition is practically a "logical or"
// therefore this doesn't destruct any links
PARMAT AT = A;
AT.Transpose();
A += AT;
}
/**
* Binary function to prune the previously discovered vertices from the current frontier
* When used with EWiseApply(SparseVec V, DenseVec W,...) we get the 'exclude = false' effect of EWiseMult
**/
struct prunediscovered: public std::binary_function<int64_t, int64_t, int64_t >
{
int64_t operator()(int64_t x, const int64_t & y) const
{
return ( y == -1 ) ? x: -1;
}
};
int main(int argc, char* argv[])
{
int nprocs, myrank;
#ifdef _OPENMP
int cblas_splits = omp_get_max_threads();
int provided, flag, claimed;
MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED, &provided );
MPI_Is_thread_main( &flag );
if (!flag)
SpParHelper::Print("This thread called init_thread but Is_thread_main gave false\n");
MPI_Query_thread( &claimed );
if (claimed != provided)
SpParHelper::Print("Query thread gave different thread level than requested\n");
#else
MPI_Init(&argc, &argv);
int cblas_splits = 1;
#endif
MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
if(argc < 3)
{
if(myrank == 0)
{
cout << "Usage: ./tdbfs <Force,Input> <Scale Forced | Input Name> {FastGen}" << endl;
cout << "Example: ./tdbfs Force 25 FastGen" << endl;
}
MPI_Finalize();
return -1;
}
{
typedef SelectMaxSRing<bool, int32_t> SR;
typedef SpParMat < int64_t, bool, SpDCCols<int64_t,bool> > PSpMat_Bool;
typedef SpParMat < int64_t, bool, SpDCCols<int32_t,bool> > PSpMat_s32p64; // sequentially use 32-bits for local matrices, but parallel semantics are 64-bits
typedef SpParMat < int64_t, int, SpDCCols<int32_t,int> > PSpMat_s32p64_Int; // similarly mixed, but holds integers as upposed to booleans
typedef SpParMat < int64_t, int64_t, SpDCCols<int64_t,int64_t> > PSpMat_Int64;
shared_ptr<CommGrid> fullWorld;
fullWorld.reset( new CommGrid(MPI_COMM_WORLD, 0, 0) );
// Declare objects
PSpMat_Bool A(fullWorld);
PSpMat_s32p64 Aeff(fullWorld);
FullyDistVec<int64_t, int64_t> degrees(fullWorld); // degrees of vertices (including multi-edges and self-loops)
FullyDistVec<int64_t, int64_t> nonisov(fullWorld); // id's of non-isolated (connected) vertices
unsigned scale;
OptBuf<int32_t, int64_t> optbuf; // let indices be 32-bits
bool scramble = false;
if(string(argv[1]) == string("Input")) // input option
{
A.ReadDistribute(string(argv[2]), 0); // read it from file
SpParHelper::Print("Read input\n");
PSpMat_Int64 * G = new PSpMat_Int64(A);
G->Reduce(degrees, Row, plus<int64_t>(), static_cast<int64_t>(0)); // identity is 0
delete G;
Symmetricize(A); // A += A';
FullyDistVec<int64_t, int64_t> * ColSums = new FullyDistVec<int64_t, int64_t>(A.getcommgrid());
A.Reduce(*ColSums, Column, plus<int64_t>(), static_cast<int64_t>(0)); // plus<int64_t> matches the type of the output vector
nonisov = ColSums->FindInds(bind2nd(greater<int64_t>(), 0)); // only the indices of non-isolated vertices
delete ColSums;
A = A(nonisov, nonisov);
Aeff = PSpMat_s32p64(A);
A.FreeMemory();
SpParHelper::Print("Symmetricized and pruned\n");
Aeff.OptimizeForGraph500(optbuf); // Should be called before threading is activated
#ifdef THREADED
ostringstream tinfo;
tinfo << "Threading activated with " << cblas_splits << " threads" << endl;
SpParHelper::Print(tinfo.str());
Aeff.ActivateThreading(cblas_splits);
#endif
}
else if(string(argv[1]) == string("Binary"))
{
uint64_t n, m;
from_string(n,string(argv[3]),std::dec);
from_string(m,string(argv[4]),std::dec);
ostringstream outs;
outs << "Reading " << argv[2] << " with " << n << " vertices and " << m << " edges" << endl;
SpParHelper::Print(outs.str());
DistEdgeList<int64_t> * DEL = new DistEdgeList<int64_t>(argv[2], n, m);
SpParHelper::Print("Read binary input to distributed edge list\n");
PermEdges(*DEL);
SpParHelper::Print("Permuted Edges\n");
RenameVertices(*DEL);
//DEL->Dump32bit("graph_permuted");
SpParHelper::Print("Renamed Vertices\n");
// conversion from distributed edge list, keeps self-loops, sums duplicates
PSpMat_Int64 * G = new PSpMat_Int64(*DEL, false);
delete DEL; // free memory before symmetricizing
SpParHelper::Print("Created Int64 Sparse Matrix\n");
G->Reduce(degrees, Row, plus<int64_t>(), static_cast<int64_t>(0)); // Identity is 0
A = PSpMat_Bool(*G); // Convert to Boolean
delete G;
int64_t removed = A.RemoveLoops();
ostringstream loopinfo;
loopinfo << "Converted to Boolean and removed " << removed << " loops" << endl;
SpParHelper::Print(loopinfo.str());
A.PrintInfo();
FullyDistVec<int64_t, int64_t> * ColSums = new FullyDistVec<int64_t, int64_t>(A.getcommgrid());
FullyDistVec<int64_t, int64_t> * RowSums = new FullyDistVec<int64_t, int64_t>(A.getcommgrid());
A.Reduce(*ColSums, Column, plus<int64_t>(), static_cast<int64_t>(0));
A.Reduce(*RowSums, Row, plus<int64_t>(), static_cast<int64_t>(0));
ColSums->EWiseApply(*RowSums, plus<int64_t>());
delete RowSums;
nonisov = ColSums->FindInds(bind2nd(greater<int64_t>(), 0)); // only the indices of non-isolated vertices
delete ColSums;
SpParHelper::Print("Found (and permuted) non-isolated vertices\n");
nonisov.RandPerm(); // so that A(v,v) is load-balanced (both memory and time wise)
A.PrintInfo();
#ifndef NOPERMUTE
A(nonisov, nonisov, true); // in-place permute to save memory
SpParHelper::Print("Dropped isolated vertices from input\n");
A.PrintInfo();
#endif
Aeff = PSpMat_s32p64(A); // Convert to 32-bit local integers
A.FreeMemory();
Symmetricize(Aeff); // A += A';
SpParHelper::Print("Symmetricized\n");
//A.Dump("graph_symmetric");
Aeff.OptimizeForGraph500(optbuf); // Should be called before threading is activated
#ifdef THREADED
ostringstream tinfo;
tinfo << "Threading activated with " << cblas_splits << " threads" << endl;
SpParHelper::Print(tinfo.str());
Aeff.ActivateThreading(cblas_splits);
#endif
}
else
{
if(string(argv[1]) == string("Force"))
{
scale = static_cast<unsigned>(atoi(argv[2]));
ostringstream outs;
outs << "Forcing scale to : " << scale << endl;
SpParHelper::Print(outs.str());
if(argc > 3 && string(argv[3]) == string("FastGen"))
{
SpParHelper::Print("Using fast vertex permutations; skipping edge permutations (like v2.1)\n");
scramble = true;
}
}
else
{
SpParHelper::Print("Unknown option\n");
MPI_Finalize();
return -1;
}
// this is an undirected graph, so A*x does indeed BFS
double initiator[4] = {.57, .19, .19, .05};
double t01 = MPI_Wtime();
double t02;
DistEdgeList<int64_t> * DEL = new DistEdgeList<int64_t>();
if(!scramble)
{
DEL->GenGraph500Data(initiator, scale, EDGEFACTOR);
SpParHelper::Print("Generated edge lists\n");
t02 = MPI_Wtime();
ostringstream tinfo;
tinfo << "Generation took " << t02-t01 << " seconds" << endl;
SpParHelper::Print(tinfo.str());
PermEdges(*DEL);
SpParHelper::Print("Permuted Edges\n");
//DEL->Dump64bit("edges_permuted");
//SpParHelper::Print("Dumped\n");
RenameVertices(*DEL); // intermediate: generates RandPerm vector, using MemoryEfficientPSort
SpParHelper::Print("Renamed Vertices\n");
}
else // fast generation
{
DEL->GenGraph500Data(initiator, scale, EDGEFACTOR, true, true ); // generate packed edges
SpParHelper::Print("Generated renamed edge lists\n");
t02 = MPI_Wtime();
ostringstream tinfo;
tinfo << "Generation took " << t02-t01 << " seconds" << endl;
SpParHelper::Print(tinfo.str());
}
// Start Kernel #1
MPI_Barrier(MPI_COMM_WORLD);
double t1 = MPI_Wtime();
// conversion from distributed edge list, keeps self-loops, sums duplicates
PSpMat_s32p64_Int * G = new PSpMat_s32p64_Int(*DEL, false);
delete DEL; // free memory before symmetricizing
SpParHelper::Print("Created Sparse Matrix (with int32 local indices and values)\n");
MPI_Barrier(MPI_COMM_WORLD);
double redts = MPI_Wtime();
G->Reduce(degrees, Row, plus<int64_t>(), static_cast<int64_t>(0)); // Identity is 0
MPI_Barrier(MPI_COMM_WORLD);
double redtf = MPI_Wtime();
ostringstream redtimeinfo;
redtimeinfo << "Calculated degrees in " << redtf-redts << " seconds" << endl;
SpParHelper::Print(redtimeinfo.str());
A = PSpMat_Bool(*G); // Convert to Boolean
delete G;
int64_t removed = A.RemoveLoops();
ostringstream loopinfo;
loopinfo << "Converted to Boolean and removed " << removed << " loops" << endl;
SpParHelper::Print(loopinfo.str());
A.PrintInfo();
FullyDistVec<int64_t, int64_t> * ColSums = new FullyDistVec<int64_t, int64_t>(A.getcommgrid());
FullyDistVec<int64_t, int64_t> * RowSums = new FullyDistVec<int64_t, int64_t>(A.getcommgrid());
A.Reduce(*ColSums, Column, plus<int64_t>(), static_cast<int64_t>(0));
A.Reduce(*RowSums, Row, plus<int64_t>(), static_cast<int64_t>(0));
SpParHelper::Print("Reductions done\n");
ColSums->EWiseApply(*RowSums, plus<int64_t>());
delete RowSums;
SpParHelper::Print("Intersection of colsums and rowsums found\n");
nonisov = ColSums->FindInds(bind2nd(greater<int64_t>(), 0)); // only the indices of non-isolated vertices
delete ColSums;
SpParHelper::Print("Found (and permuted) non-isolated vertices\n");
nonisov.RandPerm(); // so that A(v,v) is load-balanced (both memory and time wise)
A.PrintInfo();
#ifndef NOPERMUTE
A(nonisov, nonisov, true); // in-place permute to save memory
SpParHelper::Print("Dropped isolated vertices from input\n");
A.PrintInfo();
#endif
Aeff = PSpMat_s32p64(A); // Convert to 32-bit local integers
A.FreeMemory();
Symmetricize(Aeff); // A += A';
SpParHelper::Print("Symmetricized\n");
Aeff.OptimizeForGraph500(optbuf); // Should be called before threading is activated
#ifdef THREADED
ostringstream tinfo;
tinfo << "Threading activated with " << cblas_splits << " threads" << endl;
SpParHelper::Print(tinfo.str());
Aeff.ActivateThreading(cblas_splits);
#endif
Aeff.PrintInfo();
MPI_Barrier(MPI_COMM_WORLD);
double t2=MPI_Wtime();
ostringstream k1timeinfo;
k1timeinfo << (t2-t1) - (redtf-redts) << " seconds elapsed for Kernel #1" << endl;
SpParHelper::Print(k1timeinfo.str());
}
Aeff.PrintInfo();
float balance = Aeff.LoadImbalance();
ostringstream outs;
outs << "Load balance: " << balance << endl;
SpParHelper::Print(outs.str());
MPI_Barrier(MPI_COMM_WORLD);
double t1 = MPI_Wtime();
// Now that every remaining vertex is non-isolated, randomly pick ITERS many of them as starting vertices
#ifndef NOPERMUTE
degrees = degrees(nonisov); // fix the degrees array too
degrees.PrintInfo("Degrees array");
#endif
// degrees.DebugPrint();
FullyDistVec<int64_t, int64_t> Cands(ITERS, 0);
double nver = (double) degrees.TotalLength();
#ifdef DETERMINISTIC
MTRand M(1);
#else
MTRand M; // generate random numbers with Mersenne Twister
#endif
vector<double> loccands(ITERS);
vector<int64_t> loccandints(ITERS);
if(myrank == 0)
{
for(int i=0; i<ITERS; ++i)
loccands[i] = M.rand();
copy(loccands.begin(), loccands.end(), ostream_iterator<double>(cout," ")); cout << endl;
transform(loccands.begin(), loccands.end(), loccands.begin(), bind2nd( multiplies<double>(), nver ));
for(int i=0; i<ITERS; ++i)
loccandints[i] = static_cast<int64_t>(loccands[i]);
copy(loccandints.begin(), loccandints.end(), ostream_iterator<double>(cout," ")); cout << endl;
}
MPI_Bcast(&(loccandints[0]), ITERS, MPIType<int64_t>(),0,MPI_COMM_WORLD);
for(int i=0; i<ITERS; ++i)
{
Cands.SetElement(i,loccandints[i]);
}
#define MAXTRIALS 1
for(int trials =0; trials < MAXTRIALS; trials++) // try different algorithms for BFS
{
cblas_allgathertime = 0;
cblas_alltoalltime = 0;
cblas_mergeconttime = 0;
cblas_transvectime = 0;
cblas_localspmvtime = 0;
MPI_Pcontrol(1,"BFS");
double MTEPS[ITERS]; double INVMTEPS[ITERS]; double TIMES[ITERS]; double EDGES[ITERS];
for(int i=0; i<ITERS; ++i)
{
// FullyDistVec ( shared_ptr<CommGrid> grid, IT globallen, NT initval);
FullyDistVec<int64_t, int64_t> parents ( Aeff.getcommgrid(), Aeff.getncol(), (int64_t) -1); // identity is -1
// FullyDistSpVec ( shared_ptr<CommGrid> grid, IT glen);
FullyDistSpVec<int64_t, int64_t> fringe(Aeff.getcommgrid(), Aeff.getncol()); // numerical values are stored 0-based
MPI_Barrier(MPI_COMM_WORLD);
double t1 = MPI_Wtime();
fringe.SetElement(Cands[i], Cands[i]);
int iterations = 0;
while(fringe.getnnz() > 0)
{
fringe.setNumToInd();
fringe = SpMV(Aeff, fringe,optbuf); // SpMV with sparse vector (with indexisvalue flag preset), optimization enabled
fringe = EWiseMult(fringe, parents, true, (int64_t) -1); // clean-up vertices that already has parents
parents.Set(fringe);
iterations++;
}
MPI_Barrier(MPI_COMM_WORLD);
double t2 = MPI_Wtime();
FullyDistSpVec<int64_t, int64_t> parentsp = parents.Find(bind2nd(greater<int64_t>(), -1));
parentsp.Apply(myset<int64_t>(1));
// we use degrees on the directed graph, so that we don't count the reverse edges in the teps score
int64_t nedges = EWiseMult(parentsp, degrees, false, (int64_t) 0).Reduce(plus<int64_t>(), (int64_t) 0);
ostringstream outnew;
outnew << i << "th starting vertex was " << Cands[i] << endl;
outnew << "Number iterations: " << iterations << endl;
outnew << "Number of vertices found: " << parentsp.Reduce(plus<int64_t>(), (int64_t) 0) << endl;
outnew << "Number of edges traversed: " << nedges << endl;
outnew << "BFS time: " << t2-t1 << " seconds" << endl;
outnew << "MTEPS: " << static_cast<double>(nedges) / (t2-t1) / 1000000.0 << endl;
outnew << "Total communication (average so far): " << (cblas_allgathertime + cblas_alltoalltime) / (i+1) << endl;
TIMES[i] = t2-t1;
EDGES[i] = nedges;
MTEPS[i] = static_cast<double>(nedges) / (t2-t1) / 1000000.0;
SpParHelper::Print(outnew.str());
}
SpParHelper::Print("Finished\n");
ostringstream os;
MPI_Pcontrol(-1,"BFS");
os << "Per iteration communication times: " << endl;
os << "AllGatherv: " << cblas_allgathertime / ITERS << endl;
os << "AlltoAllv: " << cblas_alltoalltime / ITERS << endl;
os << "Transvec: " << cblas_transvectime / ITERS << endl;
os << "Per iteration computation times: " << endl;
os << "MergeCont: " << cblas_mergeconttime / ITERS << endl;
os << "LocalSpmv: " << cblas_localspmvtime / ITERS << endl;
sort(EDGES, EDGES+ITERS);
os << "--------------------------" << endl;
os << "Min nedges: " << EDGES[0] << endl;
os << "First Quartile nedges: " << (EDGES[(ITERS/4)-1] + EDGES[ITERS/4])/2 << endl;
os << "Median nedges: " << (EDGES[(ITERS/2)-1] + EDGES[ITERS/2])/2 << endl;
os << "Third Quartile nedges: " << (EDGES[(3*ITERS/4) -1 ] + EDGES[3*ITERS/4])/2 << endl;
os << "Max nedges: " << EDGES[ITERS-1] << endl;
double mean = accumulate( EDGES, EDGES+ITERS, 0.0 )/ ITERS;
vector<double> zero_mean(ITERS); // find distances to the mean
transform(EDGES, EDGES+ITERS, zero_mean.begin(), bind2nd( minus<double>(), mean ));
// self inner-product is sum of sum of squares
double deviation = inner_product( zero_mean.begin(),zero_mean.end(), zero_mean.begin(), 0.0 );
deviation = sqrt( deviation / (ITERS-1) );
os << "Mean nedges: " << mean << endl;
os << "STDDEV nedges: " << deviation << endl;
os << "--------------------------" << endl;
sort(TIMES,TIMES+ITERS);
os << "Min time: " << TIMES[0] << " seconds" << endl;
os << "First Quartile time: " << (TIMES[(ITERS/4)-1] + TIMES[ITERS/4])/2 << " seconds" << endl;
os << "Median time: " << (TIMES[(ITERS/2)-1] + TIMES[ITERS/2])/2 << " seconds" << endl;
os << "Third Quartile time: " << (TIMES[(3*ITERS/4)-1] + TIMES[3*ITERS/4])/2 << " seconds" << endl;
os << "Max time: " << TIMES[ITERS-1] << " seconds" << endl;
mean = accumulate( TIMES, TIMES+ITERS, 0.0 )/ ITERS;
transform(TIMES, TIMES+ITERS, zero_mean.begin(), bind2nd( minus<double>(), mean ));
deviation = inner_product( zero_mean.begin(),zero_mean.end(), zero_mean.begin(), 0.0 );
deviation = sqrt( deviation / (ITERS-1) );
os << "Mean time: " << mean << " seconds" << endl;
os << "STDDEV time: " << deviation << " seconds" << endl;
os << "--------------------------" << endl;
sort(MTEPS, MTEPS+ITERS);
os << "Min MTEPS: " << MTEPS[0] << endl;
os << "First Quartile MTEPS: " << (MTEPS[(ITERS/4)-1] + MTEPS[ITERS/4])/2 << endl;
os << "Median MTEPS: " << (MTEPS[(ITERS/2)-1] + MTEPS[ITERS/2])/2 << endl;
os << "Third Quartile MTEPS: " << (MTEPS[(3*ITERS/4)-1] + MTEPS[3*ITERS/4])/2 << endl;
os << "Max MTEPS: " << MTEPS[ITERS-1] << endl;
transform(MTEPS, MTEPS+ITERS, INVMTEPS, safemultinv<double>()); // returns inf for zero teps
double hteps = static_cast<double>(ITERS) / accumulate(INVMTEPS, INVMTEPS+ITERS, 0.0);
os << "Harmonic mean of MTEPS: " << hteps << endl;
transform(INVMTEPS, INVMTEPS+ITERS, zero_mean.begin(), bind2nd(minus<double>(), 1/hteps));
deviation = inner_product( zero_mean.begin(),zero_mean.end(), zero_mean.begin(), 0.0 );
deviation = sqrt( deviation / (ITERS-1) ) * (hteps*hteps); // harmonic_std_dev
os << "Harmonic standard deviation of MTEPS: " << deviation << endl;
SpParHelper::Print(os.str());
}
}
MPI_Finalize();
return 0;
}
|