1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
/****************************************************************/
/* Parallel Combinatorial BLAS Library (for Graph Computations) */
/* version 1.6 -------------------------------------------------*/
/* date: 6/15/2017 ---------------------------------------------*/
/* authors: Ariful Azad, Aydin Buluc --------------------------*/
/****************************************************************/
#include <mpi.h>
#include <stdint.h>
#include <sys/time.h>
#include <iostream>
#include <fstream>
#include <string>
#include <sstream> // Required for stringstreams
#include <ctime>
#include <cmath>
#include "CombBLAS/CombBLAS.h"
namespace combblas {
class HipMCLClusterSaveHandler
{
public:
// no reader
template <typename c, typename t, typename VT>
void save(std::basic_ostream<c,t>& os, std::vector<VT> & strvec, int64_t index)
{
for (auto it = strvec.begin() ; it != strvec.end(); ++it)
os << *it << " ";
}
};
/**
* Write clusters to file: vertices belonging to a cluster are written in a single line separated by space.
* TODO: sort clusters by their sizes
* @param[in] ofName {output file name}
* @param[in] clustIdForVtx {the ith entry stores the cluster id of the ith vertex}
* @param[in] vtxLabels {labels of vertices}
*/
template <class IT>
void WriteMCLClusters(std::string ofName, FullyDistVec<IT, IT> clustIdForVtx, FullyDistVec<IT, std::array<char, MAXVERTNAME> > vtxLabels)
{
auto commGrid = clustIdForVtx.getcommgrid();
MPI_Comm World = commGrid->GetWorld();
int nprocs = commGrid->GetSize();
// find the number of clusters
IT nclusters = clustIdForVtx.Reduce(maximum<IT>(), (IT) 0 ) ;
nclusters ++; // because of zero based indexing for clusters
std::vector<int> rdispls(nprocs+1);
std::vector<int> recvcnt(nprocs);
std::vector<int> sendcnt(nprocs,0);
std::vector<int> sdispls(nprocs+1);
IT ploclen = clustIdForVtx.LocArrSize();
const IT* larr = clustIdForVtx.GetLocArr(); // local part of cluster ids for vertices
//just to get the destination processor
FullyDistVec<IT,IT> temp(commGrid, nclusters,0);
for(IT i=0; i < ploclen; ++i)
{
IT locind;
int owner = temp.Owner(larr[i], locind);
sendcnt[owner]++;
}
MPI_Alltoall(sendcnt.data(), 1, MPI_INT, recvcnt.data(), 1, MPI_INT, World);
sdispls[0] = 0;
rdispls[0] = 0;
for(int i=0; i<nprocs; ++i)
{
sdispls[i+1] = sdispls[i] + sendcnt[i];
rdispls[i+1] = rdispls[i] + recvcnt[i];
}
typedef std::array<char, MAXVERTNAME> STRASARRAY;
typedef std::pair< IT, STRASARRAY> TYPE2SEND;
const STRASARRAY* lVtxLabels = vtxLabels.GetLocArr();
std::vector<TYPE2SEND> senddata(ploclen);
// Pack cluster and vertex information to send
std::vector<int> count(nprocs, 0);
for(IT i=0; i < ploclen; ++i)
{
IT locind;
int owner = temp.Owner(larr[i], locind);
int idx = sdispls[owner] + count[owner];
count[owner]++;
senddata[idx] = TYPE2SEND(locind, lVtxLabels[i]); // sending local cluster ids for the destination processor
}
MPI_Datatype MPI_CLUST;
MPI_Type_contiguous(sizeof(TYPE2SEND), MPI_CHAR, &MPI_CLUST);
MPI_Type_commit(&MPI_CLUST);
IT totrecv = rdispls[nprocs];
std::vector<TYPE2SEND> recvdata(totrecv);
MPI_Alltoallv(senddata.data(), sendcnt.data(), sdispls.data(), MPI_CLUST, recvdata.data(), recvcnt.data(), rdispls.data(), MPI_CLUST, World);
// Receiver groups vertices by cluster ids
std::vector< std::vector<std::string> > vtxGroupbyCC(temp.LocArrSize());
for(int i=0; i<totrecv; ++i)
{
IT clusterID = recvdata[i].first;
auto locnull = std::find(recvdata[i].second.begin(), recvdata[i].second.end(), '\0'); // find the null character (or string::end)
std::string vtxstr(recvdata[i].second.begin(), locnull);
vtxGroupbyCC[clusterID].push_back(vtxstr);
}
// in each cluster sort vertex labels
#ifdef THREADED
#pragma omp parallel for
#endif
for(unsigned int i=0; i<vtxGroupbyCC.size(); ++i)
{
std::sort(vtxGroupbyCC[i].begin(), vtxGroupbyCC[i].end());
}
// Create a vector locally populate it
FullyDistVec<IT,std::vector<std::string> > clusters(commGrid, nclusters, std::vector<std::string>{});
for(int i=0; i<clusters.LocArrSize(); i++)
{
clusters.SetLocalElement(i, vtxGroupbyCC[i]);
}
// do not write header and 1-based
clusters.ParallelWrite(ofName, 1, HipMCLClusterSaveHandler(), false);
}
/**
* Write clusters to file: vertices belonging to a cluster are written in a single line separated by space.
* Ids of vertices are used as labels
* TODO: sort clusters by their sizes
* @param[in] ofName {output file name}
* @param[in] clustIdForVtx {the ith entry stores the cluster id of the ith vertex}
*/
template <class IT>
void WriteMCLClusters(std::string ofName, FullyDistVec<IT, IT> clustIdForVtx, int base)
{
auto commGrid = clustIdForVtx.getcommgrid();
MPI_Comm World = commGrid->GetWorld();
int nprocs = commGrid->GetSize();
IT lenuntil = clustIdForVtx.LengthUntil();
// find the number of clusters
IT nclusters = clustIdForVtx.Reduce(maximum<IT>(), (IT) 0 ) ;
nclusters ++; // because of zero based indexing for clusters
std::vector<int> rdispls(nprocs+1);
std::vector<int> recvcnt(nprocs);
std::vector<int> sendcnt(nprocs,0);
std::vector<int> sdispls(nprocs+1);
IT ploclen = clustIdForVtx.LocArrSize();
const IT* larr = clustIdForVtx.GetLocArr(); // local part of cluster ids for vertices
//just to get the destination processor
FullyDistVec<IT,IT> temp(commGrid, nclusters,0);
for(IT i=0; i < ploclen; ++i)
{
IT locind;
int owner = temp.Owner(larr[i], locind);
sendcnt[owner]++;
}
MPI_Alltoall(sendcnt.data(), 1, MPI_INT, recvcnt.data(), 1, MPI_INT, World);
sdispls[0] = 0;
rdispls[0] = 0;
for(int i=0; i<nprocs; ++i)
{
sdispls[i+1] = sdispls[i] + sendcnt[i];
rdispls[i+1] = rdispls[i] + recvcnt[i];
}
std::vector<std::pair<IT, IT>> senddata(ploclen);
// Pack cluster and vertex information to send
std::vector<int> count(nprocs, 0);
for(IT i=0; i < ploclen; ++i)
{
IT locind;
int owner = temp.Owner(larr[i], locind);
int idx = sdispls[owner] + count[owner];
count[owner]++;
senddata[idx] = std::make_pair(locind, i+lenuntil+base); // sending local cluster ids for the destination processor
}
MPI_Datatype MPI_CLUST;
MPI_Type_contiguous(sizeof(std::pair<IT, IT>), MPI_CHAR, &MPI_CLUST);
MPI_Type_commit(&MPI_CLUST);
IT totrecv = rdispls[nprocs];
std::vector<std::pair<IT, IT>> recvdata(totrecv);
MPI_Alltoallv(senddata.data(), sendcnt.data(), sdispls.data(), MPI_CLUST, recvdata.data(), recvcnt.data(), rdispls.data(), MPI_CLUST, World);
// Receiver groups vertices by cluster ids
std::vector< std::vector<IT> > vtxGroupbyCC(temp.LocArrSize());
for(int i=0; i<totrecv; ++i)
{
IT clusterID = recvdata[i].first;
vtxGroupbyCC[clusterID].push_back(recvdata[i].second);
}
// Create a vector locally populate it
FullyDistVec<IT,std::vector<IT> > clusters(commGrid, nclusters, std::vector<IT>{});
for(int i=0; i<clusters.LocArrSize(); i++)
{
clusters.SetLocalElement(i, vtxGroupbyCC[i]);
}
// do not write header and 1-based
clusters.ParallelWrite(ofName, 1, HipMCLClusterSaveHandler(), false);
}
}
|