File: tutorial.sgml

package info (click to toggle)
comedilib 0.7.22-2
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 5,348 kB
  • ctags: 2,465
  • sloc: ansic: 16,316; sh: 8,492; ruby: 1,360; makefile: 325; yacc: 262; perl: 257; lex: 79; python: 59
file content (652 lines) | stat: -rw-r--r-- 20,617 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
<!-- <!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook V3.1//EN" "docbook/dtd/3.1/docbook.dtd">  -->

<section id="writingprograms">
<title>
Writing &comedi; programs
</title>
<para>
This Section describes how a well-installed and configured &comedi;
package can be used in an application, to communicate data with a set
of &comedi; devices.
<xref linkend="acquisitionfunctions"> gives more details about
the various acquisition functions with which the application
programmer can perform data acquisition in &comedi;.
</para>
<para>
Also don't forget to take a good look at the
<filename class=directory>demo</filename>
directory of the Comedilib source code. It contains lots of examples
for the basic functionalities of &comedi;.
</para>

<section id="firstprogram">
<title>
Your first &comedi; program
</title>

<para>
This example requires a card that has analog or digital input. This
progam opens the device, gets the data, and prints it out:
<programlisting>
#include <![CDATA[<stdio.h>]]>   /* for printf() */
#include <![CDATA[<]]><link linkend="comedi-comedilib-h">comedilib.h</link><![CDATA[>]]>

int subdev = 0;         /* change this to your input subdevice */
int chan = 0;           /* change this to your channel */
int range = 0;          /* more on this later */
int aref = <link linkend="aref-ground">AREF_GROUND</link>; /* more on this later */

int main(int argc,char *argv[])
{
  <link linkend="ref-type-comedi-t">comedi_t</link> *it;
  <link linkend="ref-type-lsampl-t">lsampl_t</link> data;

  it=<link linkend="func-ref-comedi-open">comedi_open</link>("/dev/comedi0");

  <link linkend="func-ref-comedi-data-read">comedi_data_read</link>(it,subdev,chan,range,aref, & data);

  printf("%d\n",data);

  return 0;
}
</programlisting>
The
<function>
 <link linkend="func-ref-comedi-open">comedi_open()</link>
</function> can only be successful if the
<filename>comedi0</filename> device file is configured to point to a
valid &comedi; driver. <xref linkend="cardconfiguration"> explains
how this driver is linked to the <quote>device file</quote>.
</para>
<para>
The code above is basically the guts of
<filename>demo/inp.c</filename>, without error checking or fancy
options.  Compile the program using
</para>

<screen>
cc tut1.c -lcomedi -o tut1
</screen>
<para>
(Replace <literal>cc</literal> by your favourite C compiler command.)
</para>

<para>
The <parameter class=function>range</parameter> variable tells
&comedi; which gain to use when measuring an analog voltage.  Since we
don't know (yet) which numbers are valid, or what each means, we'll
use <literal>0</literal>, because it won't cause errors.  Likewise
with <parameter class=function>aref</parameter>, which determines the
analog reference used.
</para>
</section>


<section id="convertingsamples">
<title>
Converting samples to voltages
</title>

<para>
If you selected an analog input subdevice, you probably noticed
that the output of <command>tut1</command> is a number between
<literal>0</literal> and <literal>4095</literal>, or
<literal>0</literal> and <literal>65535</literal>, depending on the
number of bits in the A/D converter. &comedi; samples are
<emphasis>always</emphasis> unsigned,
with <literal>0</literal>  representing the lowest voltage of the ADC,
and <literal>4095</literal>
the highest.  &comedi; compensates for anything else the manual for
your device says.  However, you probably prefer to have this number
translated to a voltage.  Naturally, as a good programmer, your first
question is: <quote>How do I do this in a device-independent
manner?</quote>
</para>

<para>
Most devices give you a choice of gain and unipolar/bipolar
input, and &comedi; allows you to select which of these to use.  This
parameter is called the <quote>range parameter,</quote> since it
specifies the <quote>input range</quote> for analog input (or
<quote>output range</quote> for analog output.)  The range parameter
represents both the gain and the unipolar/bipolar aspects.
</para>

<para>
&comedi; keeps the number of available ranges and the largest
sample value for each subdevice/channel combination.  (Some
devices allow different input/output ranges for different
channels in a subdevice.)
</para>

<para>
The largest sample value can be found using the function
<programlisting>
 <link linkend="ref-type-lsampl-t">lsampl_t</link> <link linkend="func-ref-comedi-get-maxdata">comedi_get_maxdata</link>(<link linkend="ref-type-comedi-t">comedi_t</link> * device, unsigned int subdevice, unsigned int channel))
</programlisting>
The number of available ranges can be found using the function:
<programlisting>
 int <link linkend="func-ref-comedi-get-n-ranges">comedi_get_n_ranges</link>(<link linkend="ref-type-comedi-t">comedi_t</link> * device, unsigned int subdevice, unsigned int channel);
</programlisting>
</para>

<para>
For each value of the range parameter for a particular
subdevice/channel, you can get range information using:
<programlisting>
 <link linkend="ref-type-comedi-range">comedi_range</link> * <link linkend="func-ref-comedi-get-range">comedi_get_range</link>(<link linkend="ref-type-comedi-t">comedi_t</link> * device, 
                                 unsigned int subdevice, unsigned int channel, unsigned int range);
</programlisting>
which returns a pointer to a
<link linkend="ref-type-comedi-range">comedi_range</link>
structure, which has the following contents:
<programlisting>
typedef struct{
        double min;
        double max;
        unsigned int unit;
}comedi_range;
</programlisting>
The structure element <parameter class=function>min</parameter>
represents the voltage corresponding to
<link linkend="func-ref-comedi-data-read">comedi_data_read()</link>
returning <literal>0</literal>,
and <parameter class=function>max</parameter> represents
<link linkend="func-ref-comedi-data-read">comedi_data_read()</link>
returning <parameter class=function>maxdata</parameter>,
(i.e., <literal>4095</literal> for <literal>12</literal> bit A/C
converters, <literal>65535</literal> for <literal>16</literal> bit,
or, <literal>1</literal> for digital input; more on this in a bit.)
The <parameter class=function>unit</parameter> entry tells you if
<parameter class=function>min</parameter> and
<parameter class=function>max</parameter> refer to voltage, current,
or are dimensionless (e.g., for digital I/O).
</para>

<para>
<quote>Could it get easier?</quote> you say.  Well, yes.  Use
the function <function>comedi_to_phys()</function>
<link linkend="func-ref-comedi-to-phys">comedi_to_phys()</link>, which
converts data values to physical units.  Call it using something like
</para>

<programlisting>
volts=<link linkend="func-ref-comedi-to-phys">comedi_to_phys</link>(it,data,range,maxdata);
</programlisting>

<para>
and the opposite
</para>

<programlisting>
data=<link linkend="func-ref-comedi-from-phys">comedi_from_phy</link>s(it,volts,range,maxdata);
</programlisting>

</section>

<section id="usingfileinterface">
<title>
Using the file interface
</title>


<para>
In addition to providing low level routines for data
access, the &comedi; library provides higher-level access,
much like the standard <acronym>C</acronym> library provides
<function>fopen()</function>, etc.  as a high-level (and portable)
alternative to the direct <acronym>UNIX</acronym> system calls
<function>open()</function>, etc.  Similarily to
<function>fopen()</function>, we have
<link linkend="func-ref-comedi-open">comedi_open()</link>:
</para>

<programlisting>
file=<link linkend="func-ref-comedi-open">comedi_open</link>("/dev/comedi0");
</programlisting>

<para>
where <parameter class=function>file</parameter> is of type 
<parameter>(<link linkend="ref-type-comedi-t">comedi_t</link> *)</parameter>.
This function calls <function>open()</function>, as done explicitly in
a previous section, but also fills the
<link linkend="ref-type-comedi-t">comedi_t</link>
structure with lots of goodies; this information will be useful soon.  
</para>

<para>
Specifically, you need to know
<parameter class=function>maxdata</parameter> for a specific
subdevice/channel. How about:

<programlisting>
maxdata=<link linkend="func-ref-comedi-get-maxdata">comedi_get_maxdata</link>(file,subdevice,channel);
</programlisting>

Wow! How easy. And the range information?

<programlisting>
<link linkend="ref-type-comedi-range">comedi_range</link> * <link linkend="func-ref-comedi-get-range">comedi_get_range(<link linkend="ref-type-comedi-t">comedi_t</link>comedi_t</link> *it,unsigned int subdevice,unsigned int chan,unsigned int range);
</programlisting>

</para>

</section>


<section id="secondprogram">
<title>
Your second &comedi; program: simple acquisition
</title>


<para>
Actually, this is the first &comedi; program again, just
that we've added what we've learned.
</para>


<programlisting>
#include &lt;stdio.h&gt;      /* for printf() */
#include <![CDATA[<]]><link linkend="comedi-comedilib-h">comedilib.h</link><![CDATA[>]]>

int subdev = 0;         /* change this to your input subdevice */
int chan = 0;           /* change this to your channel */
int range = 0;          /* more on this later */
int aref = 0;           /* more on this later */

int main(int argc,char *argv[])
{
  <link linkend="ref-type-comedi-t">comedi_t</link> *cf;
  int chan=0;
  <link linkend="ref-type-lsampl-t">lsampl_t</link> data;
  int maxdata,rangetype;
  double volts;

  cf=<link linkend="func-ref-comedi-open">comedi_open</link>("/dev/comedi0");

  maxdata=<link linkend="func-ref-comedi-get-maxdata">comedi_get_maxdata</link>(cf,subdev,chan);

  rangetype=comedi_get_rangetype(cf,subdev,chan);

  <link linkend="func-ref-comedi-data-read">comedi_data_read</link>(cf->fd,subdev,chan,range,aref,&amp;data);

  volts=<link linkend="func-ref-comedi-to-phys">comedi_to_phys</link>(data,rangetype,range,maxdata);

  printf("%d %g\n",data,volts);

 return 0;
}
</programlisting>

</section>

<section id="thirdprogram">
<title>
Your third &comedi; program: instructions
</title>
<para>
This program (taken from the set of demonstration examples that come
with &comedi;) shows how to use a somewhat more flexible acquisition
function, the so-called <link linkend="instructions">instruction</link>.
<programlisting>
<![CDATA[
#include <stdio.h>
#include <]]><link linkend="comedi-comedilib-h">comedilib.h</link><![CDATA[>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <sys/time.h>
#include <unistd.h>
#include "examples.h"
]]>

/*
 * This example does 3 instructions in one system call.  It does
 * a gettimeofday() call, then reads N_SAMPLES samples from an
 * analog input, and the another gettimeofday() call.
 */

#define MAX_SAMPLES 128

<link linkend="ref-type-comedi-t">comedi_t</link> *device;

int main(int argc, char *argv[])
{
  int ret,i;
  <link linkend="ref-type-comedi-insn">comedi_insn</link> insn[3];
  <link linkend="ref-type-comedi-insnlist">comedi_insnlist</link> il;
  struct timeval t1,t2;
  <link linkend="ref-type-lsampl-t">lsampl_t</link> data[MAX_SAMPLES];

  parse_options(argc,argv);


  device=<link linkend="func-ref-comedi-open">comedi_open</link>(filename);
  if(!device){
    <link linkend="func-ref-comedi-perror">comedi_perror</link>(filename);
    exit(0);
  }

  if(verbose){
    printf("measuring device=%s subdevice=%d channel=%d range=%d analog reference=%d\n",
      filename,subdevice,channel,range,aref);
  }

  /* Set up a the "instruction list", which is just a pointer
   * to the array of instructions and the number of instructions.
   */
  il.n_insns=3;
  il.insns=insn;

  /* Instruction 0: perform a gettimeofday() */
  insn[0].insn=<link linkend="insn-gtod">INSN_GTOD</link>;
  insn[0].n=2;
  insn[0].data=(void *)&amp;t1;

  /* Instruction 1: do 10 analog input reads */
  insn[1].insn=<link linkend="insn-read">INSN_READ</link>;
  insn[1].n=n_scan;
  insn[1].data=data;
  insn[1].subdev=subdevice;
  insn[1].chanspec=<link linkend="ref-macro-CR-PACK">CR_PACK</link>(channel,range,aref);

  /* Instruction 2: perform a gettimeofday() */
  insn[2].insn=<link linkend="insn-gtod">INSN_GTOD</link>;
  insn[2].n=2;
  insn[2].data=(void *)&amp;t2;

  ret=<link linkend="func-ref-comedi-do-insnlist">comedi_do_insnlist</link>(device,&amp;il);
  if(ret<![CDATA[<]]>0){
    <link linkend="func-ref-comedi-perror">comedi_perror</link>(filename);
    exit(0);
  }

  printf("initial time: %ld.%06ld\n",t1.tv_sec,t1.tv_usec);
  for(i=0;i<![CDATA[<]]>n_scan;i++){
    printf("%d\n",data[i]);
  }
  printf("final time: %ld.%06ld\n",t2.tv_sec,t2.tv_usec);

  printf("difference (us): %ld\n",(t2.tv_sec-t1.tv_sec)*1000000+
      (t2.tv_usec-t1.tv_usec));

  return 0;
}
</programlisting>
</para>

</section>

<section id="fourthprogram">
<title>
Your fourth &comedi; program: commands
</title>

<para>
This example programs an analog output subdevice with &comedi;'s most
powerful acquisition function, the asynchronous
<link linkend="commandsstreaming">command</link>, to generate a waveform. 
</para>

<para>
The waveform in this example is a sine wave, but this can be easily
changed to make a generic function generator.
</para>

<para>
The function generation algorithm is the same as what is typically
used in digital function generators.  A 32-bit accumulator is
incremented by a phase factor, which is the amount (in radians) that
the generator advances each time step.  The accumulator is then
shifted right by 20 bits, to get a 12 bit offset into a lookup table.
The value in the lookup table at that offset is then put into a buffer
for output to the DAC.
</para>

<para>
Once you have
issued the command, &comedi; expects you to keep the buffer full of
data to output to the acquisition card.  This is done by 
<function>write()</function>.  Since there may be a delay between the 
<link linkend="func-ref-comedi-command">comedi_command()</link>
and a subsequent <function>write()</function>, you
should fill the buffer using <function>write()</function> before you call 
<link linkend="func-ref-comedi-command">comedi_command()</link>,
as is done here.
<programlisting>
<![CDATA[
#include <stdio.h>
#include <]]><link linkend="comedi-comedilib-h">comedilib.h</link><![CDATA[>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <getopt.h>
#include <ctype.h>
#include <math.h>
#include "examples.h"
]]>

double waveform_frequency = 10.0; /* frequency of the sine wave to output */
double amplitude          = 4000; /* peak-to-peak amplitude, in DAC units (i.e., 0-4095) */
double offset             = 2048; /* offset, in DAC units */

/* This is the size of chunks we deal with when creating and
   outputting data.  This *could* be 1, but that would be
   inefficient */
#define BUF_LEN 4096

int subdevice;
int external_trigger_number = 0;

sampl_t data[BUF_LEN];

void <link linkend="dds-output">dds_output</link>(sampl_t *buf,int n);
void <link linkend="dds-init">dds_init</link>(void);

/* This define determines which waveform to use. */
#define <anchor id="dds-init-function">dds_init_function <link linkend="dds-init-sine">dds_init_sine</link>

void <link linkend="dds-init-sine">dds_init_sine</link>(void);
void <link linkend="dds-init-pseudocycloid">dds_init_pseudocycloid</link>(void);
void <link linkend="dds-init-sawtooth">dds_init_sawtooth</link>(void);

int <anchor id="comedi-internal-trigger">comedi_internal_trigger(<link linkend="ref-type-comedi-t">comedi_t</link> *dev, unsigned int subd, unsigned int trignum)
{
  <link linkend="ref-type-comedi-insn">comedi_insn</link> insn;
  <link linkend="ref-type-lsampl-t">lsampl_t</link> data[1];

  memset(<![CDATA[&insn]]>, 0, sizeof(<link linkend="ref-type-comedi-insn">comedi_insn</link>));
  insn.insn = <link linkend="insn-inttrig">INSN_INTTRIG</link>;
  insn.subdev = subd;
  insn.data = data;
  insn.n = 1;

  data[0] = trignum;

  return <link linkend="func-ref-comedi-do-insn">comedi_do_insn</link>(dev, <![CDATA[&insn]]>);
}


int main(int argc, char *argv[])
{
  <link linkend="ref-type-comedi-cmd">comedi_cmd</link> cmd;
  int err;
  int n,m;
  int total=0;
  <link linkend="ref-type-comedi-t">comedi_t</link> *dev;
  unsigned int chanlist[16];
  unsigned int maxdata;
  <link linkend="ref-type-comedi-range">comedi_range</link> *rng;
  int ret;
  <link linkend="ref-type-lsampl-t">lsampl_t</link> insn_data = 0; 

  parse_options(argc,argv);

  /* Force n_chan to be 1 */
  n_chan = 2;

  if(value){ waveform_frequency = value; }

  dev = <link linkend="func-ref-comedi-open">comedi_open</link>(filename);
  if(dev == NULL){
    fprintf(stderr, "error opening %s\n", filename);
    return -1;
  }
  subdevice = <link linkend="func-ref-comedi-find-subdevice-by-type">comedi_find_subdevice_by_type</link>(dev,COMEDI_SUBD_AO,0);

  maxdata   = <link linkend="func-ref-comedi-get-maxdata">comedi_get_maxdata</link>(dev,subdevice,0);
  rng       = <link linkend="func-ref-comedi-get-range">comedi_get_range</link>(dev,subdevice,0,0);
  offset    = (double)<link linkend="func-ref-comedi-from-phys">comedi_from_phys</link>(0.0,rng,maxdata);
  amplitude = (double)<link linkend="func-ref-comedi-from-phys">comedi_from_phys</link>(1.0,rng,maxdata) - offset;

  memset(<![CDATA[&cmd]]>,0,sizeof(cmd));
  /* fill in the <link linkend="ref-type-comedi-cmd">command data structure</link>: */
  cmd.subdev         = subdevice;
  cmd.flags          = 0;
  cmd.start_src      = <link linkend="trig-int-start-src">TRIG_INT</link>;
  cmd.start_arg      = 0;
  cmd.scan_begin_src = <link linkend="trig-timer">TRIG_TIMER</link>;
  cmd.scan_begin_arg = 1e9/freq;
  cmd.convert_src    = <link linkend="trig-now">TRIG_NOW</link>;
  cmd.convert_arg    = 0;
  cmd.scan_end_src   = <link linkend="trig-count">TRIG_COUNT</link>;
  cmd.scan_end_arg   = n_chan;
  cmd.stop_src       = <link linkend="trig-none">TRIG_NONE</link>;
  cmd.stop_arg       = 0;

  cmd.chanlist       = chanlist;
  cmd.chanlist_len   = n_chan;

  chanlist[0] = <link linkend="ref-macro-CR-PACK">CR_PACK</link>(channel,range,aref);
  chanlist[1] = <link linkend="ref-macro-CR-PACK">CR_PACK</link>(channel+1,range,aref);

  <link linkend="dds-init">dds_init</link>();

  <link linkend="dds-output">dds_output</link>(data,BUF_LEN);
  <link linkend="dds-output">dds_output</link>(data,BUF_LEN);

  dump_cmd(stdout,<![CDATA[&cmd]]>);

  if ((err = <link linkend="func-ref-comedi-command">comedi_command</link>(dev, <![CDATA[&cmd]]>)) < 0) {
    <link linkend="func-ref-comedi-perror">comedi_perror</link>("comedi_command");
    exit(1);
  }

  m=write(comedi_fileno(dev),data,BUF_LEN*sizeof(sampl_t));
  if(<![CDATA[m<0]]>){
    perror("write");
    exit(1);
  }
  printf("m=%d\n",m);
  
  ret = <link linkend="comedi-internal-trigger">comedi_internal_trigger</link>(dev, subdevice, 0);
<![CDATA[
  if(ret<0){
]]>
    perror("comedi_internal_trigger\n");
    exit(1);
  }

  while(1){
    <link linkend="dds-output">dds_output</link>(data,BUF_LEN);
    n=BUF_LEN*sizeof(sampl_t);
    while(n>0){
      m=write(comedi_fileno(dev),(void *)data+(BUF_LEN*sizeof(sampl_t)-n),n);
<![CDATA[
      if(m<0){
]]>
        perror("write");
        exit(0);
      }
      printf("m=%d\n",m);
      n-=m;
    }
    total+=BUF_LEN;
  }

  return 0;
}

#define WAVEFORM_SHIFT 16
<![CDATA[
#define WAVEFORM_LEN (1<<WAVEFORM_SHIFT)
]]>
#define WAVEFORM_MASK (WAVEFORM_LEN-1)

sampl_t waveform[WAVEFORM_LEN];

unsigned int acc;
unsigned int adder;

void <anchor id="dds-init">dds_init(void)
{
<![CDATA[
  adder=waveform_frequency/freq*(1<<16)*(1<<WAVEFORM_SHIFT);
]]>

  <link linkend="dds-init-function">dds_init_function</link>();
}

void <anchor id="dds-output">dds_output(sampl_t *buf,int n)
{
  int i;
  sampl_t *p=buf;

  <![CDATA[
  for(i=0;i<n;i++){
  *p=waveform[(acc>>16)&WAVEFORM_MASK];
  ]]>
  p++;
  acc+=adder;
  }
}


void <anchor id="dds-init-sine">dds_init_sine(void)
{
  int i;

  <![CDATA[
  for(i=0;i<WAVEFORM_LEN;i++){
  waveform[i]=rint(offset+0.5*amplitude*cos(i*2*M_PI/WAVEFORM_LEN));
  ]]>
  }
}

/* Yes, I know this is not the proper equation for a cycloid.  Fix it. */
void <anchor id="dds-init-pseudocycloid">dds_init_pseudocycloid(void)
{
  int i;
  double t;

  <![CDATA[
  for(i=0;i<WAVEFORM_LEN/2;i++){
  t=2*((double)i)/WAVEFORM_LEN;
  waveform[i]=rint(offset+amplitude*sqrt(1-4*t*t));
  }
  for(i=WAVEFORM_LEN/2;i<WAVEFORM_LEN;i++){
  t=2*(1-((double)i)/WAVEFORM_LEN);
  waveform[i]=rint(offset+amplitude*sqrt(1-t*t));
  }
  ]]>
}

void <anchor id="dds-init-sawtooth">dds_init_sawtooth(void)
{
  int i;

  <![CDATA[
  for(i=0;i<WAVEFORM_LEN;i++){
  waveform[i]=rint(offset+amplitude*((double)i)/WAVEFORM_LEN);
  ]]>
  }
}
</programlisting>
</para>

</section>

</section>