1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
/*
Copyright 2012 University of Washington
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
///////////////////////////////////////////////////////////////////////////////
// Templated class for creating a pool of threads that hang around and wait
// to do work. It should work for both Win32 threads and Posix threads. If the
// user specifies a max number of threads to allow in the pool, jobs will be
// queued until a thread is free to do the work.
//
// User can specify the following:
// * A parameter type to pass to the threads
// * Thread function the threads will run
// * Minimum number of threads to keep around in the pool
// * The maximum number of threads to allow in the pool
//
///////////////////////////////////////////////////////////////////////////////
#ifndef _THREADPOOL_H
#define _THREADPOOL_H
#include <vector>
#include <deque>
#include <stdint.h>
#include "Threading.h"
#include "CometStatus.h"
template<class T> class ThreadManager;
// This is the pool where the threads reside. New threads are created as
// needed, but without exceeding the max number specified by the user.
// Jobs are queued if necessary, until a thread is free to do the work.
template <class T> class ThreadPool
{
public:
typedef void (*ThreadProc) (T param);
public:
static const int UnlimitedThreads = -1;
// typedef enum NextThreadState { Run, Sleep, Die } ;
enum NextThreadState { Run, Sleep, Die } ;
ThreadPool(ThreadProc threadProc, int minThreads, int maxThreads, int maxNumParamsToQueue = -1)
{
_minThreads = minThreads;
_maxThreads = maxThreads;
_threadProc = threadProc;
_maxQueuedParams = maxNumParamsToQueue;
Threading::CreateMutex(&_poolAccessMutex);
Threading::CreateSemaphore(&_queueParamsSemaphore);
for (_numCurrThreads=0; _numCurrThreads < _minThreads; _numCurrThreads++)
{
new ThreadManager<T>(this);
}
}
~ThreadPool()
{
for (unsigned int i = 0; i < _threads.size(); i++)
{
_threads[i]->End();
}
Threading::DestroyMutex(_poolAccessMutex);
Threading::DestroySemaphore(_queueParamsSemaphore);
}
ThreadProc GetThreadProc() { return _threadProc; }
void Launch(T param)
{
Threading::LockMutex(_poolAccessMutex);
if (!_threads.empty())
{
ThreadManager<T> *pThreadMgr = _threads.back();
_threads.pop_back();
Threading::UnlockMutex(_poolAccessMutex);
pThreadMgr->Wake(param);
return;
}
if (_numCurrThreads < _maxThreads)
{
new ThreadManager<T>(this);
_numCurrThreads++;
}
_params.push_back(param);
Threading::UnlockMutex(_poolAccessMutex);
}
NextThreadState RejoinPool(ThreadManager<T> *pThreadMgr)
{
Threading::LockMutex(_poolAccessMutex);
// Any parameters queued? If yes, give it to the thread to process.
if (!_params.empty())
{
T param = _params.front();
_params.pop_front();
Threading::UnlockMutex(_poolAccessMutex);
pThreadMgr->SetParam(param);
return ThreadPool<T>::Run;
}
// Have we exceeded the min num threads allowed? If yes, reduce
// the number back down.
if (_numCurrThreads > _minThreads)
{
_numCurrThreads--;
Threading::UnlockMutex(_poolAccessMutex);
return ThreadPool<T>::Die;
}
// Has there been an error, or has search been cancelled?
// If so, we need to kill the thread.
if (g_cometStatus.IsError() || g_cometStatus.IsCancel())
{
_numCurrThreads--;
Threading::UnlockMutex(_poolAccessMutex);
return ThreadPool<T>::Die;
}
// No params queued; ask thread to go to sleep & wait mode.
_threads.push_back(pThreadMgr);
Threading::UnlockMutex(_poolAccessMutex);
return ThreadPool<T>::Sleep;
}
void WaitForThreads()
{
// This is not the best solution. Try to think of a better way to
// handle this - maybe using a semaphore?
// Give the threads a chance to start doing work - 1 second at the most!
const unsigned long ulMaxTotalWaitMilliseconds = 1000;
const unsigned long ulWaitMilliseconds = 10;
unsigned long ulElapsedTimeMilliseconds = 0;
while (NumActiveThreads() == 0)
{
if (ulElapsedTimeMilliseconds >= ulMaxTotalWaitMilliseconds)
{
break;
}
Threading::ThreadSleep(ulWaitMilliseconds);
ulElapsedTimeMilliseconds += ulWaitMilliseconds;
}
// Now wait for all of them to go to sleep
while (NumActiveThreads() != 0)
{
Threading::ThreadSleep(100);
}
}
void WaitForQueuedParams()
{
if (ShouldCheckQueuedParams() && (NumParamsQueued() > _maxQueuedParams))
{
Threading::WaitSemaphore(_queueParamsSemaphore);
}
}
void CheckQueuedParams()
{
if (ShouldCheckQueuedParams())
{
if (NumParamsQueued() <= _maxQueuedParams)
{
QueueMoreParams();
}
}
}
int NumParamsQueued()
{
Threading::LockMutex(_poolAccessMutex);
int numParamsQueued = _params.size();
Threading::UnlockMutex(_poolAccessMutex);
return numParamsQueued;
}
int NumActiveThreads()
{
Threading::LockMutex(_poolAccessMutex);
int numActiveThreads = _numCurrThreads - _threads.size();
Threading::UnlockMutex(_poolAccessMutex);
return numActiveThreads;
}
protected:
bool ShouldCheckQueuedParams()
{
// Only check for queued params if we have a valid number for _maxQueuedParams
return _maxQueuedParams != -1;
}
void QueueMoreParams()
{
Threading::SignalSemaphore(_queueParamsSemaphore);
}
ThreadProc _threadProc;
std::vector<ThreadManager<T>*> _threads;
std::deque<T> _params;
Mutex _poolAccessMutex;
int _maxThreads;
int _minThreads;
int _numCurrThreads;
int _maxQueuedParams;
Semaphore _queueParamsSemaphore;
};
// Thread manager for individual threads - calls specified thread proc function
// and takes a prameter of type T. It manages the interactions with the thread
// pool.
template<class T> class ThreadManager
{
public:
static uint32_t ThreadRoutingFunction(void* pParam)
{
ThreadManager<T> *pThreadMgr = reinterpret_cast<ThreadManager<T>*>(pParam);
// Infinite loop in here until instructed to die.
return pThreadMgr->Run();
}
ThreadManager(ThreadPool<T> *pPool)
{
_endThread = false;
ThreadManager<T>::_pPool = pPool;
Threading::CreateSemaphore(&_wakeSemaphore);
Threading::CreateSemaphore(&_sleepSemaphore);
// Begin the thread that is being managed
Threading::BeginThread(
reinterpret_cast<ThreadProc>(ThreadManager<T>::ThreadRoutingFunction),
this, // Parameter to the thread
&_threadIdentifier);
}
~ThreadManager()
{
Threading::DestroySemaphore(_wakeSemaphore);
Threading::DestroySemaphore(_sleepSemaphore);
}
void SetParam(T param) { ThreadManager::_param = param; }
T GetParam() { return _param; }
void Sleep()
{
Threading::SignalSemaphore(_sleepSemaphore);
Threading::WaitSemaphore(_wakeSemaphore);
}
void Wake(T param)
{
Threading::WaitSemaphore(_sleepSemaphore);
SetParam(param);
Threading::SignalSemaphore(_wakeSemaphore);
}
void End()
{
Threading::WaitSemaphore(_sleepSemaphore);
_endThread = true;
Threading::SignalSemaphore(_wakeSemaphore);
}
uint32_t Run()
{
typename ThreadPool<T>::NextThreadState nextState;
while ((nextState = _pPool->RejoinPool(this)) != ThreadPool<T>::Die)
{
// Rejoin will set pParam if possible
if (nextState == ThreadPool<T>::Sleep)
{
Sleep();
}
// We've been awoken. First check to see if we should die. If not,
// we run the function we're bound to.
if (_endThread)
{
break;
}
(*_pPool->GetThreadProc()) (GetParam());
// So we don't loop endlessly with the same parameter
SetParam(NULL);
_pPool->CheckQueuedParams();
}
// The thread exits if the pool won't accept it's rejoin - deleting itself on exit
Threading::EndThread();
delete this;
return 0;
}
protected:
T _param;
ThreadPool<T> *_pPool;
Semaphore _sleepSemaphore;
Semaphore _wakeSemaphore;
ThreadId _threadIdentifier;
bool _endThread;
};
#endif
|