1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# flake8: noqa
import unittest
import pytest
def compressed_tensors_config_available():
try:
from transformers.utils.quantization_config import ( # noqa: F401
CompressedTensorsConfig,
)
return True
except ImportError:
return False
def accelerate_availabe():
try:
import accelerate # noqa: F401
return True
except ImportError:
return False
_is_compressed_tensors_config_available = compressed_tensors_config_available()
_is_accelerate_available = accelerate_availabe()
def requires_hf_quantizer():
return pytest.mark.skipif(
not _is_compressed_tensors_config_available,
reason="requires transformers>=4.45 to support CompressedTensorsHfQuantizer",
)
def requires_accelerate():
return pytest.mark.skipif(
not _is_accelerate_available,
reason="requires accelerate",
)
def get_random_mat(M, K, dtype) -> "torch.Tensor":
"""
:param M: number of rows
:param K: number of columns
:param dtype: data type of the matrix
:return: random matrix of shape (M, K) with non-zero values
"""
import torch
from compressed_tensors.quantization import FP8_DTYPE
rand_tensor_dtype = dtype
if dtype in [torch.int8, FP8_DTYPE]:
rand_tensor_dtype = torch.float16
mat = torch.rand(M, K, dtype=rand_tensor_dtype).cuda()
mat = mat.masked_fill_(mat == 0, 1)
return mat.to(dtype)
def generate_pruned_semi_structured_mat(M, K, dtype) -> "torch.Tensor":
"""
:param M: number of rows
:param K: number of columns
:param dtype: data type of the matrix
:return: random matrix of shape (M, K) with 2:4 sparsity pattern
"""
import torch
from compressed_tensors.quantization import FP8_DTYPE
mask = torch.Tensor([0, 0, 1, 1]).tile((M, K // 4)).bool()
rand_tensor_dtype = dtype
if dtype in [torch.int8, FP8_DTYPE]:
rand_tensor_dtype = torch.float16
mat = torch.rand(M, K, dtype=rand_tensor_dtype)
mat = mat.masked_fill_(mat == 0, 1)
if dtype == FP8_DTYPE:
# some float8_e4m3fn operations are not supported on CPU
mat = mat.cuda()
mask = mask.cuda()
mat = mat * mask
return mat.to(dtype)
def induce_sparsity(tensor, sparsity_ratio) -> "torch.Tensor":
"""
Makes a tensor sparse by zeroing out a given fraction
of its smallest absolute values.
:param: weight_tensor (torch.Tensor): The input weight tensor.
:param: sparsity_ratio (float): Fraction of weights to be zeroed
(0 <= sparsity_ratio <= 1).
:returns: torch.Tensor: Sparse version of the input tensor.
"""
import torch
if not (0 <= sparsity_ratio <= 1):
raise ValueError("Sparsity ratio must be between 0 and 1.")
# Flatten the tensor and compute the threshold for sparsity
flattened = tensor.view(-1)
k = int(sparsity_ratio * flattened.numel())
if k > 0:
threshold = torch.topk(flattened.abs(), k, largest=False).values.max()
sparse_tensor = torch.where(
tensor.abs() > threshold, tensor, torch.zeros_like(tensor)
)
else:
sparse_tensor = tensor
return sparse_tensor
def is_gpu_available():
"""
:return: True if a GPU is available, False otherwise
"""
try:
import torch # noqa: F401
return torch.cuda.device_count() > 0
except ImportError:
return False
def requires_gpu(test_case):
return unittest.skipUnless(is_gpu_available(), "test requires GPU")(test_case)
|