1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
import numpy as np
from math import pi
import time
from compyle.config import get_config
from compyle.api import declare, annotate
from compyle.parallel import Elementwise
from compyle.array import get_backend, wrap
from compyle.low_level import cast
import compyle.array as carr
def bc(x, y):
return np.sin(np.pi * (x + y))
@annotate
def laplace_step(i, u, res, err, nx, ny, dx2, dy2, dnr_inv):
xid = cast(i % nx, "int")
yid = cast(i / nx, "int")
if xid == 0 or xid == nx - 1 or yid == 0 or yid == ny - 1:
return
res[i] = ((u[i - 1] + u[i + 1]) * dx2 +
(u[i - nx] + u[i + nx]) * dy2) * dnr_inv
diff = res[i] - u[i]
err[i] = diff * diff
class Grid(object):
def __init__(self, nx=10, ny=10, xmin=0., xmax=1.,
ymin=0., ymax=1., bc=lambda x: 0, backend=None):
self.backend = get_backend(backend)
self.xmin, self.xmax, self.ymin, self.ymax = xmin, xmax, ymin, ymax
self.nx, self.ny = nx, ny
self.dx = (xmax - xmin) / (nx - 1)
self.dy = (ymax - ymin) / (ny - 1)
self.x = np.arange(self.xmin, self.xmax + self.dx * 0.5, self.dx)
self.y = np.arange(self.ymin, self.ymax + self.dy * 0.5, self.dy)
self.bc = bc
self.setup()
def setup(self):
u_host = np.zeros((self.nx, self.ny)).astype(np.float32)
u_host[0, :] = self.bc(self.xmin, self.y)
u_host[-1, :] = self.bc(self.xmax, self.y)
u_host[:, 0] = self.bc(self.x, self.ymin)
u_host[:, -1] = self.bc(self.x, self.ymax)
self.u = wrap(u_host.flatten(), backend=self.backend)
self.err = carr.zeros_like(self.u)
def get(self):
u_host = self.u.get()
return np.resize(u_host, (self.nx, self.ny))
def compute_err(self):
return np.sqrt(carr.dot(self.err, self.err))
def plot(self):
import matplotlib.pyplot as plt
plt.imshow(self.get())
plt.show()
class LaplaceSolver(object):
def __init__(self, grid, backend=None):
self.grid = grid
self.backend = get_backend(backend)
self.step_method = Elementwise(laplace_step, backend=self.backend)
self.res = self.grid.u.copy()
def solve(self, max_iter=None, eps=1.0e-8):
err = np.inf
g = self.grid
dx2 = g.dx ** 2
dy2 = g.dy ** 2
dnr_inv = 0.5 / (dx2 + dy2)
count = 0
while err > eps:
if max_iter and count >= max_iter:
return err, count
self.step_method(g.u, self.res, g.err, g.nx, g.ny,
dx2, dy2, dnr_inv)
err = g.compute_err()
tmp = g.u
g.u = self.res
self.res = tmp
count += 1
return err, count
if __name__ == '__main__':
from compyle.utils import ArgumentParser
p = ArgumentParser()
p.add_argument('--nx', action='store', type=int, dest='nx',
default=100, help='Number of grid points in x.')
p.add_argument('--ny', action='store', type=int, dest='ny',
default=100, help='Number of grid points in y.')
p.add_argument(
'--show', action='store_true', dest='show',
default=False, help='Show plot at the end of simulation'
)
o = p.parse_args()
grid = Grid(nx=o.nx, ny=o.ny, bc=bc, backend=o.backend)
solver = LaplaceSolver(grid, backend=o.backend)
start = time.time()
err, count = solver.solve(eps=1e-6)
end = time.time()
print("Number of iterations = %s" % count)
print("Time taken = %g secs" % (end - start))
if o.show:
solver.grid.plot()
|