File: md_nnps.py

package info (click to toggle)
compyle 0.8.1-11
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,100 kB
  • sloc: python: 12,337; makefile: 21
file content (139 lines) | stat: -rw-r--r-- 5,242 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import numpy as np
from math import pi
import time

from compyle.config import get_config
from compyle.api import declare, annotate
from compyle.parallel import Elementwise, Reduction
from compyle.array import get_backend, wrap
import compyle.array as carr

from nnps import NNPSCountingSort, NNPSRadixSort
from md_simple import integrate_step1, integrate_step2, \
        boundary_condition, MDSolverBase


@annotate
def calculate_force(i, x, y, z, fx, fy, fz, pe, nbr_starts, nbr_lengths, nbrs):
    start_idx = nbr_starts[i]
    length = nbr_lengths[i]
    for k in range(start_idx, start_idx + length):
        j = nbrs[k]
        if i == j:
            continue
        xij = x[i] - x[j]
        yij = y[i] - y[j]
        zij = z[i] - z[j]
        rij2 = xij * xij + yij * yij + zij * zij
        irij2 = 1.0 / rij2
        irij6 = irij2 * irij2 * irij2
        irij12 = irij6 * irij6
        pe[i] += (2 * (irij12 - irij6))
        f_base = 24 * irij2 * (2 * irij12 - irij6)

        fx[i] += f_base * xij
        fy[i] += f_base * yij
        fz[i] += f_base * zij


@annotate
def step_method1(i, x, y, z, vx, vy, vz, fx, fy, fz, pe, xmin, xmax,
                 ymin, ymax, zmin, zmax, m, dt, nbr_starts, nbr_lengths,
                 nbrs):
    integrate_step1(i, m, dt, x, y, z, vx, vy, vz, fx, fy, fz)
    boundary_condition(i, x, y, z, vx, vy, vz, fx, fy, fz, pe, xmin, xmax,
                       ymin, ymax, zmin, zmax)


@annotate
def step_method2(i, x, y, z, vx, vy, vz, fx, fy, fz, pe, xmin, xmax,
                 ymin, ymax, zmin, zmax, m, dt, nbr_starts, nbr_lengths,
                 nbrs):
    calculate_force(i, x, y, z, fx, fy, fz, pe, nbr_starts, nbr_lengths, nbrs)
    integrate_step2(i, m, dt, x, y, z, vx, vy, vz, fx, fy, fz)


class MDNNPSSolver(MDSolverBase):
    def __init__(self, num_particles, x=None, y=None, z=None,
                 vx=None, vy=None, vz=None,
                 xmax=100., ymax=100., zmax=100., dx=2., init_T=0.,
                 backend=None, use_count_sort=False):
        super().__init__(num_particles, x=x, y=y, z=z, vx=vx, vy=vy, vz=vz,
                         xmax=xmax, ymax=ymax, zmax=zmax, dx=dx, init_T=init_T,
                         backend=backend)
        self.nnps_algorithm = NNPSCountingSort \
            if use_count_sort else NNPSRadixSort
        self.nnps = self.nnps_algorithm(self.x, self.y, self.z, 3., 0.01,
                                        self.xmax, self.ymax, self.zmax,
                                        backend=self.backend)
        self.init_forces = Elementwise(calculate_force, backend=self.backend)
        self.step1 = Elementwise(step_method1, backend=self.backend)
        self.step2 = Elementwise(step_method2, backend=self.backend)

    def solve(self, t, dt, log_output=False):
        num_steps = int(t // dt)
        self.nnps.build()
        self.nnps.get_neighbors()
        self.init_forces(self.x, self.y, self.z, self.fx, self.fy, self.fz,
                         self.pe, self.nnps.nbr_starts,
                         self.nnps.nbr_lengths, self.nnps.nbrs)
        for i in range(num_steps):
            self.step1(self.x, self.y, self.z, self.vx, self.vy, self.vz,
                       self.fx, self.fy, self.fz,
                       self.pe, self.xmin, self.xmax, self.ymin, self.ymax,
                       self.zmin, self.zmax, self.m, dt, self.nnps.nbr_starts,
                       self.nnps.nbr_lengths, self.nnps.nbrs)
            self.nnps.build()
            self.nnps.get_neighbors()
            self.step2(self.x, self.y, self.z, self.vx, self.vy, self.vz,
                       self.fx, self.fy, self.fz,
                       self.pe, self.xmin, self.xmax, self.ymin, self.ymax,
                       self.zmin, self.zmax, self.m, dt, self.nnps.nbr_starts,
                       self.nnps.nbr_lengths, self.nnps.nbrs)

            if i % 100 == 0:
                self.post_step(i, log_output=log_output)


if __name__ == '__main__':
    from compyle.utils import ArgumentParser
    p = ArgumentParser()
    p.add_argument(
        '--use-count-sort', action='store_true', dest='use_count_sort',
        default=False, help='Use count sort instead of radix sort'
    )
    p.add_argument(
        '--show', action='store_true', dest='show',
        default=False, help='Show plot'
    )
    p.add_argument(
        '--log-output', action='store_true', dest='log_output',
        default=False, help='Log output'
    )


    p.add_argument('-n', action='store', type=int, dest='n',
                   default=100, help='Number of particles')

    p.add_argument('--tf', action='store', type=float, dest='t',
                   default=40., help='Final time')

    p.add_argument('--dt', action='store', type=float, dest='dt',
                   default=0.02, help='Time step')

    o = p.parse_args()

    solver = MDNNPSSolver(
        o.n,
        backend=o.backend,
        use_count_sort=o.use_count_sort)

    start = time.time()
    solver.solve(o.t, o.dt, log_output=o.log_output)
    end = time.time()
    print("Time taken for N = %i is %g secs" % (o.n, (end - start)))
    if o.log_output:
        solver.write_log('nnps_log.log')
    if o.show:
        solver.pull()
        solver.plot()