1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
import numpy as np
from math import pi
import time
from compyle.config import get_config
from compyle.api import declare, annotate
from compyle.parallel import Elementwise, Reduction
from compyle.array import get_backend, wrap
import compyle.array as carr
from nnps import NNPSCountingSort, NNPSRadixSort
from md_simple import integrate_step1, integrate_step2, \
boundary_condition, MDSolverBase
@annotate
def calculate_force(i, x, y, z, fx, fy, fz, pe, nbr_starts, nbr_lengths, nbrs):
start_idx = nbr_starts[i]
length = nbr_lengths[i]
for k in range(start_idx, start_idx + length):
j = nbrs[k]
if i == j:
continue
xij = x[i] - x[j]
yij = y[i] - y[j]
zij = z[i] - z[j]
rij2 = xij * xij + yij * yij + zij * zij
irij2 = 1.0 / rij2
irij6 = irij2 * irij2 * irij2
irij12 = irij6 * irij6
pe[i] += (2 * (irij12 - irij6))
f_base = 24 * irij2 * (2 * irij12 - irij6)
fx[i] += f_base * xij
fy[i] += f_base * yij
fz[i] += f_base * zij
@annotate
def step_method1(i, x, y, z, vx, vy, vz, fx, fy, fz, pe, xmin, xmax,
ymin, ymax, zmin, zmax, m, dt, nbr_starts, nbr_lengths,
nbrs):
integrate_step1(i, m, dt, x, y, z, vx, vy, vz, fx, fy, fz)
boundary_condition(i, x, y, z, vx, vy, vz, fx, fy, fz, pe, xmin, xmax,
ymin, ymax, zmin, zmax)
@annotate
def step_method2(i, x, y, z, vx, vy, vz, fx, fy, fz, pe, xmin, xmax,
ymin, ymax, zmin, zmax, m, dt, nbr_starts, nbr_lengths,
nbrs):
calculate_force(i, x, y, z, fx, fy, fz, pe, nbr_starts, nbr_lengths, nbrs)
integrate_step2(i, m, dt, x, y, z, vx, vy, vz, fx, fy, fz)
class MDNNPSSolver(MDSolverBase):
def __init__(self, num_particles, x=None, y=None, z=None,
vx=None, vy=None, vz=None,
xmax=100., ymax=100., zmax=100., dx=2., init_T=0.,
backend=None, use_count_sort=False):
super().__init__(num_particles, x=x, y=y, z=z, vx=vx, vy=vy, vz=vz,
xmax=xmax, ymax=ymax, zmax=zmax, dx=dx, init_T=init_T,
backend=backend)
self.nnps_algorithm = NNPSCountingSort \
if use_count_sort else NNPSRadixSort
self.nnps = self.nnps_algorithm(self.x, self.y, self.z, 3., 0.01,
self.xmax, self.ymax, self.zmax,
backend=self.backend)
self.init_forces = Elementwise(calculate_force, backend=self.backend)
self.step1 = Elementwise(step_method1, backend=self.backend)
self.step2 = Elementwise(step_method2, backend=self.backend)
def solve(self, t, dt, log_output=False):
num_steps = int(t // dt)
self.nnps.build()
self.nnps.get_neighbors()
self.init_forces(self.x, self.y, self.z, self.fx, self.fy, self.fz,
self.pe, self.nnps.nbr_starts,
self.nnps.nbr_lengths, self.nnps.nbrs)
for i in range(num_steps):
self.step1(self.x, self.y, self.z, self.vx, self.vy, self.vz,
self.fx, self.fy, self.fz,
self.pe, self.xmin, self.xmax, self.ymin, self.ymax,
self.zmin, self.zmax, self.m, dt, self.nnps.nbr_starts,
self.nnps.nbr_lengths, self.nnps.nbrs)
self.nnps.build()
self.nnps.get_neighbors()
self.step2(self.x, self.y, self.z, self.vx, self.vy, self.vz,
self.fx, self.fy, self.fz,
self.pe, self.xmin, self.xmax, self.ymin, self.ymax,
self.zmin, self.zmax, self.m, dt, self.nnps.nbr_starts,
self.nnps.nbr_lengths, self.nnps.nbrs)
if i % 100 == 0:
self.post_step(i, log_output=log_output)
if __name__ == '__main__':
from compyle.utils import ArgumentParser
p = ArgumentParser()
p.add_argument(
'--use-count-sort', action='store_true', dest='use_count_sort',
default=False, help='Use count sort instead of radix sort'
)
p.add_argument(
'--show', action='store_true', dest='show',
default=False, help='Show plot'
)
p.add_argument(
'--log-output', action='store_true', dest='log_output',
default=False, help='Log output'
)
p.add_argument('-n', action='store', type=int, dest='n',
default=100, help='Number of particles')
p.add_argument('--tf', action='store', type=float, dest='t',
default=40., help='Final time')
p.add_argument('--dt', action='store', type=float, dest='dt',
default=0.02, help='Time step')
o = p.parse_args()
solver = MDNNPSSolver(
o.n,
backend=o.backend,
use_count_sort=o.use_count_sort)
start = time.time()
solver.solve(o.t, o.dt, log_output=o.log_output)
end = time.time()
print("Time taken for N = %i is %g secs" % (o.n, (end - start)))
if o.log_output:
solver.write_log('nnps_log.log')
if o.show:
solver.pull()
solver.plot()
|