1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
import numpy as np
from math import pi
import time
from compyle.config import get_config
from compyle.api import declare, annotate
from compyle.parallel import Elementwise, Reduction
from compyle.array import get_backend, wrap
import compyle.array as carr
@annotate
def calculate_energy(i, vx, vy, vz, pe, num_particles):
ke = 0.5 * (vx[i] * vx[i] + vy[i] * vy[i] + vz[i] * vz[i])
return pe[i] + ke
@annotate
def calculate_kinetic_energy(i, vx, vy, vz):
return 0.5 * (vx[i] * vx[i] + vy[i] * vy[i] + vz[i] * vz[i])
@annotate
def calculate_force(i, x, y, z, fx, fy, fz, pe, num_particles):
force_cutoff = 3.
force_cutoff2 = force_cutoff * force_cutoff
for j in range(num_particles):
if i == j:
continue
xij = x[i] - x[j]
yij = y[i] - y[j]
zij = z[i] - z[j]
rij2 = xij * xij + yij * yij + zij * zij
if rij2 > force_cutoff2:
continue
irij2 = 1.0 / rij2
irij6 = irij2 * irij2 * irij2
irij12 = irij6 * irij6
pe[i] += (2 * (irij12 - irij6))
f_base = 24 * irij2 * (2 * irij12 - irij6)
fx[i] += f_base * xij
fy[i] += f_base * yij
fz[i] += f_base * zij
@annotate
def step_method1(i, x, y, z, vx, vy, vz, fx, fy, fz, pe, xmin, xmax,
ymin, ymax, zmin, zmax, m, dt, num_particles):
integrate_step1(i, m, dt, x, y, z, vx, vy, vz, fx, fy, fz)
boundary_condition(i, x, y, z, vx, vy, vz, fx, fy, fz, pe, xmin, xmax,
ymin, ymax, zmin, zmax)
@annotate
def step_method2(i, x, y, z, vx, vy, vz, fx, fy, fz, pe, xmin, xmax,
ymin, ymax, zmin, zmax, m, dt, num_particles):
calculate_force(i, x, y, z, fx, fy, fz, pe, num_particles)
integrate_step2(i, m, dt, x, y, z, vx, vy, vz, fx, fy, fz)
@annotate
def integrate_step1(i, m, dt, x, y, z, vx, vy, vz, fx, fy, fz):
x[i] += vx[i] * dt + 0.5 * fx[i] * dt * dt
y[i] += vy[i] * dt + 0.5 * fy[i] * dt * dt
z[i] += vz[i] * dt + 0.5 * fz[i] * dt * dt
vx[i] += 0.5 * fx[i] * dt
vy[i] += 0.5 * fy[i] * dt
vz[i] += 0.5 * fz[i] * dt
@annotate
def integrate_step2(i, m, dt, x, y, z, vx, vy, vz, fx, fy, fz):
vx[i] += 0.5 * fx[i] * dt
vy[i] += 0.5 * fy[i] * dt
vz[i] += 0.5 * fz[i] * dt
@annotate
def boundary_condition(i, x, y, z, vx, vy, vz, fx, fy, fz, pe,
xmin, xmax, ymin, ymax, zmin, zmax):
xwidth = xmax - xmin
ywidth = ymax - ymin
zwidth = zmax - zmin
stiffness = 50.
pe[i] = 0.
if x[i] < 0.5:
fx[i] = stiffness * (0.5 - x[i])
pe[i] += 0.5 * stiffness * (0.5 - x[i]) * (0.5 - x[i])
elif x[i] > xwidth - 0.5:
fx[i] = stiffness * (xwidth - 0.5 - x[i])
pe[i] += 0.5 * stiffness * (xwidth - 0.5 - x[i]) * (xwidth - 0.5 - x[i])
else:
fx[i] = 0.
if y[i] < 0.5:
fy[i] = stiffness * (0.5 - y[i])
pe[i] += 0.5 * stiffness * (0.5 - y[i]) * (0.5 - y[i])
elif y[i] > ywidth - 0.5:
fy[i] = stiffness * (ywidth - 0.5 - y[i])
pe[i] += 0.5 * stiffness * (ywidth - 0.5 - y[i]) * (ywidth - 0.5 - y[i])
else:
fy[i] = 0.
if z[i] < 0.5:
fz[i] = stiffness * (0.5 - z[i])
pe[i] += 0.5 * stiffness * (0.5 - z[i]) * (0.5 - z[i])
elif z[i] > zwidth - 0.5:
fz[i] = stiffness * (zwidth - 0.5 - z[i])
pe[i] += 0.5 * stiffness * (zwidth - 0.5 - z[i]) * (zwidth - 0.5 - z[i])
else:
fz[i] = 0.
class MDSolverBase(object):
def __init__(self, num_particles, x=None, y=None, z=None,
vx=None, vy=None, vz=None,
xmax=100., ymax=100., zmax=100., dx=2., init_T=0.,
backend=None):
self.backend = get_backend(backend)
self.num_particles = num_particles
self.xmin, self.xmax = 0., xmax
self.ymin, self.ymax = 0., ymax
self.zmin, self.zmax = 0., zmax
self.log_data = []
self.m = 1.
if x is None and y is None and z is None:
self.x, self.y, self.z = self.setup_positions(num_particles, dx)
if vx is None and vy is None and vz is None:
self.vx, self.vy, self.vz = self.setup_velocities(
init_T, num_particles)
self.fx = carr.zeros_like(self.x, backend=self.backend)
self.fy = carr.zeros_like(self.y, backend=self.backend)
self.fz = carr.zeros_like(self.z, backend=self.backend)
self.pe = carr.zeros_like(self.x, backend=self.backend)
self.energy_calc = Reduction("a+b", map_func=calculate_energy,
backend=self.backend)
self.kinetic_energy_calc = Reduction(
"a+b",
map_func=calculate_kinetic_energy,
backend=self.backend)
def setup_velocities(self, T, num_particles):
np.random.seed(123)
vx = np.random.uniform(0, 1., size=num_particles).astype(np.float64)
vy = np.random.uniform(0, 1., size=num_particles).astype(np.float64)
vz = np.random.uniform(0, 1., size=num_particles).astype(np.float64)
T_current = np.average(vx ** 2 + vy ** 2 + vz ** 2)
scaling_factor = (T / T_current) ** 0.5
vx = vx * scaling_factor
vy = vy * scaling_factor
vz = vz * scaling_factor
return wrap(vx, vy, vz, backend=self.backend)
def setup_positions(self, num_particles, dx):
ndim = np.ceil(num_particles ** (1 / 3.))
dim_length = ndim * dx
self.xmax = 3 * (1 + round(dim_length * 1.5 / 3.))
self.ymax = 3 * (1 + round(dim_length * 1.5 / 3.))
self.zmax = 3 * (1 + round(dim_length * 1.5 / 3.))
xmin_eff = ((self.xmax - self.xmin) - dim_length) / 2.
xmax_eff = ((self.xmax - self.xmin) + dim_length) / 2.
x, y, z = np.mgrid[xmin_eff:xmax_eff:dx, xmin_eff:xmax_eff:dx,
xmin_eff:xmax_eff:dx]
x = x.ravel().astype(np.float64)[:num_particles]
y = y.ravel().astype(np.float64)[:num_particles]
z = z.ravel().astype(np.float64)[:num_particles]
return wrap(x, y, z, backend=self.backend)
def post_step(self, step, log_output=False):
energy = self.energy_calc(self.vx, self.vy, self.vz, self.pe,
self.num_particles)
if log_output:
self.log_data.append([step, carr.sum(self.pe),
self.kinetic_energy_calc(self.vx, self.vy, self.vz)])
print("Energy at time step =", step, "is", energy)
def write_log(self, fname):
np.savetxt(fname, np.array(self.log_data),
header="timestep\tpotential_energy\tkinetic_energy")
def pull(self):
self.x.pull()
self.y.pull()
self.z.pull()
def plot(self):
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set_xlim(self.xmin, self.xmax)
ax.set_ylim(self.ymin, self.ymax)
ax.set_zlim(self.zmin, self.zmax)
ax.scatter(self.x.data, self.y.data, self.z.data)
plt.show()
class MDSolver(MDSolverBase):
def __init__(self, num_particles, x=None, y=None, z=None,
vx=None, vy=None, vz=None,
xmax=100., ymax=100., zmax=100., dx=2., init_T=0.,
backend=None):
super().__init__(num_particles, x=x, y=y, z=z, vx=vx, vy=vy, vz=vz,
xmax=xmax, ymax=ymax, zmax=zmax, dx=dx, init_T=init_T,
backend=backend)
self.init_forces = Elementwise(calculate_force, backend=self.backend)
self.step1 = Elementwise(step_method1, backend=self.backend)
self.step2 = Elementwise(step_method2, backend=self.backend)
def solve(self, t, dt, log_output=False):
num_steps = int(t // dt)
self.init_forces(self.x, self.y, self.z, self.fx, self.fy, self.fz,
self.pe, self.num_particles)
for i in range(num_steps):
self.step1(self.x, self.y, self.z, self.vx, self.vy, self.vz,
self.fx, self.fy, self.fz,
self.pe, self.xmin, self.xmax, self.ymin, self.ymax,
self.zmin, self.zmax, self.m, dt, self.num_particles)
self.step2(self.x, self.y, self.z, self.vx, self.vy, self.vz,
self.fx, self.fy, self.fz,
self.pe, self.xmin, self.xmax, self.ymin, self.ymax,
self.zmin, self.zmax, self.m, dt, self.num_particles)
if i % 100 == 0:
self.post_step(i, log_output=log_output)
if __name__ == '__main__':
from compyle.utils import ArgumentParser
p = ArgumentParser()
p.add_argument(
'--show', action='store_true', dest='show',
default=False, help='Show plot'
)
p.add_argument('-n', action='store', type=int, dest='n',
default=100, help='Number of particles')
p.add_argument('--tf', action='store', type=float, dest='t',
default=40., help='Final time')
p.add_argument('--dt', action='store', type=float, dest='dt',
default=0.02, help='Time step')
o = p.parse_args()
solver = MDSolver(o.n, backend=o.backend)
start = time.time()
solver.solve(o.t, o.dt)
end = time.time()
print("Time taken for N = %i is %g secs" % (o.n, (end - start)))
if o.show:
solver.pull()
solver.plot()
|