1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
from nnps_kernels import *
from compyle.config import get_config
from compyle.api import declare, annotate
from compyle.parallel import serial, Elementwise, Reduction, Scan
from compyle.array import get_backend, wrap
from compyle.low_level import atomic_inc, cast
from math import floor
from time import time
import numpy as np
import compyle.array as carr
class NNPS(object):
def __init__(self, x, y, h, xmax, ymax, backend=None):
self.backend = backend
self.num_particles = x.length
self.x, self.y = x, y
self.h = h
cmax = np.array([floor(xmax / h), floor(ymax / h)], dtype=np.int32)
self.max_key = 1 + flatten(cmax[0], cmax[1], 1 + cmax[1])
self.qmax = 1 + cmax[1]
# neighbor kernels
self.find_neighbor_lengths = Elementwise(find_neighbor_lengths_knl,
backend=self.backend)
self.find_neighbors = Elementwise(find_neighbors_knl,
backend=self.backend)
self.scan_start_indices = Scan(input=input_start_indices,
output=output_start_indices,
scan_expr="a+b", dtype=np.int32,
backend=self.backend)
self.init_arrays()
def init_arrays(self):
# sort arrays
self.bin_counts = carr.zeros(self.max_key, dtype=np.int32,
backend=self.backend)
self.start_indices = carr.zeros(self.max_key, dtype=np.int32,
backend=self.backend)
self.keys = carr.zeros(self.num_particles, dtype=np.int32,
backend=self.backend)
self.sorted_indices = carr.zeros(self.num_particles, dtype=np.int32,
backend=self.backend)
# neighbor arrays
self.nbr_lengths = carr.zeros(self.num_particles, dtype=np.int32,
backend=self.backend)
self.nbr_starts = carr.zeros(self.num_particles, dtype=np.int32,
backend=self.backend)
self.nbrs = carr.zeros(2 * self.num_particles, dtype=np.int32,
backend=self.backend)
def reset_arrays(self):
# sort arrays
self.bin_counts.fill(0)
self.start_indices.fill(0)
self.sorted_indices.fill(0)
# neighbors array
self.nbr_lengths.fill(0)
self.nbr_starts.fill(0)
def get_neighbors(self):
self.find_neighbor_lengths(self.x, self.y, self.h, self.qmax,
self.start_indices, self.sorted_indices,
self.bin_counts, self.nbr_lengths,
self.max_key)
self.scan_start_indices(counts=self.nbr_lengths,
indices=self.nbr_starts)
self.total_neighbors = int(self.nbr_lengths[-1] + self.nbr_starts[-1])
self.nbrs.resize(self.total_neighbors)
self.find_neighbors(self.x, self.y, self.h, self.qmax,
self.start_indices, self.sorted_indices,
self.bin_counts, self.nbr_starts,
self.nbrs, self.max_key)
class NNPSCountingSort(NNPS):
def __init__(self, x, y, h, xmax, ymax, backend=None):
super().__init__(x, y, h, xmax, ymax, backend=backend)
# sort kernels
self.count_bins = Elementwise(count_bins, backend=self.backend)
self.sort_indices = Elementwise(sort_indices, backend=self.backend)
def init_arrays(self):
super().init_arrays()
self.sort_offsets = carr.zeros(self.num_particles, dtype=np.int32,
backend=self.backend)
def reset_arrays(self):
super().reset_arrays()
# sort arrays
self.sort_offsets.fill(0)
def build(self):
self.reset_arrays()
self.count_bins(self.x, self.y, self.h, self.qmax, self.keys,
self.bin_counts, self.sort_offsets)
self.scan_start_indices(counts=self.bin_counts,
indices=self.start_indices)
self.sort_indices(self.keys, self.sort_offsets, self.start_indices,
self.sorted_indices)
class NNPSRadixSort(NNPS):
def __init__(self, x, y, h, xmax, ymax, backend=None):
super().__init__(x, y, h, xmax, ymax, backend=backend)
self.max_bits = np.ceil(np.log2(self.max_key))
# sort kernels
self.fill_keys = Elementwise(fill_keys, backend=self.backend)
self.fill_bin_counts = Elementwise(fill_bin_counts,
backend=self.backend)
self.scan_keys = Scan(input=input_scan_keys,
output=output_scan_keys,
scan_expr="a+b", dtype=np.int32,
backend=self.backend)
def init_arrays(self):
super().init_arrays()
# sort arrays
self.sorted_keys = carr.zeros(self.num_particles, dtype=np.int32,
backend=self.backend)
self.indices = carr.zeros(self.num_particles, dtype=np.int32,
backend=self.backend)
def reset_arrays(self):
super().reset_arrays()
self.sorted_keys.fill(0)
def build(self):
self.reset_arrays()
self.fill_keys(self.x, self.y, self.h, self.qmax, self.indices,
self.keys)
self.sorted_keys, self.sorted_indices = carr.sort_by_keys(
[self.keys, self.indices],
key_bits=self.max_bits, backend=self.backend)
self.scan_keys(keys=self.sorted_keys,
start_indices=self.start_indices)
self.fill_bin_counts(self.sorted_keys, self.start_indices,
self.bin_counts, self.num_particles)
if __name__ == "__main__":
import sys
backend = sys.argv[1] if len(sys.argv) > 1 else 'cython'
np.random.seed(123)
num_particles = 20
x = np.random.uniform(0, 10., size=num_particles).astype(np.float32)
y = np.random.uniform(0, 10., size=num_particles).astype(np.float32)
x, y = wrap(x, y, backend=backend)
nnps = NNPSRadixSort(x, y, 3., 10., 10., backend=backend)
nnps.build()
nnps.get_neighbors()
print(nnps.start_indices)
print(nnps.bin_counts)
print(nnps.nbr_lengths)
|