File: nnps.py

package info (click to toggle)
compyle 0.8.1-11
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,100 kB
  • sloc: python: 12,337; makefile: 21
file content (159 lines) | stat: -rw-r--r-- 6,557 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from nnps_kernels import *
from compyle.config import get_config
from compyle.api import declare, annotate
from compyle.parallel import serial, Elementwise, Reduction, Scan
from compyle.array import get_backend, wrap
from compyle.low_level import atomic_inc, cast
from math import floor
from time import time

import numpy as np
import compyle.array as carr


class NNPS(object):
    def __init__(self, x, y, h, xmax, ymax, backend=None):
        self.backend = backend
        self.num_particles = x.length
        self.x, self.y = x, y
        self.h = h

        cmax = np.array([floor(xmax / h), floor(ymax / h)], dtype=np.int32)
        self.max_key = 1 + flatten(cmax[0], cmax[1], 1 + cmax[1])
        self.qmax = 1 + cmax[1]

        # neighbor kernels
        self.find_neighbor_lengths = Elementwise(find_neighbor_lengths_knl,
                                                 backend=self.backend)
        self.find_neighbors = Elementwise(find_neighbors_knl,
                                          backend=self.backend)
        self.scan_start_indices = Scan(input=input_start_indices,
                                       output=output_start_indices,
                                       scan_expr="a+b", dtype=np.int32,
                                       backend=self.backend)
        self.init_arrays()

    def init_arrays(self):
        # sort arrays
        self.bin_counts = carr.zeros(self.max_key, dtype=np.int32,
                                     backend=self.backend)
        self.start_indices = carr.zeros(self.max_key, dtype=np.int32,
                                        backend=self.backend)
        self.keys = carr.zeros(self.num_particles, dtype=np.int32,
                               backend=self.backend)
        self.sorted_indices = carr.zeros(self.num_particles, dtype=np.int32,
                                         backend=self.backend)

        # neighbor arrays
        self.nbr_lengths = carr.zeros(self.num_particles, dtype=np.int32,
                                      backend=self.backend)
        self.nbr_starts = carr.zeros(self.num_particles, dtype=np.int32,
                                     backend=self.backend)
        self.nbrs = carr.zeros(2 * self.num_particles, dtype=np.int32,
                               backend=self.backend)

    def reset_arrays(self):
        # sort arrays
        self.bin_counts.fill(0)
        self.start_indices.fill(0)
        self.sorted_indices.fill(0)

        # neighbors array
        self.nbr_lengths.fill(0)
        self.nbr_starts.fill(0)

    def get_neighbors(self):
        self.find_neighbor_lengths(self.x, self.y, self.h, self.qmax,
                                   self.start_indices, self.sorted_indices,
                                   self.bin_counts, self.nbr_lengths,
                                   self.max_key)
        self.scan_start_indices(counts=self.nbr_lengths,
                                indices=self.nbr_starts)
        self.total_neighbors = int(self.nbr_lengths[-1] + self.nbr_starts[-1])
        self.nbrs.resize(self.total_neighbors)
        self.find_neighbors(self.x, self.y, self.h, self.qmax,
                            self.start_indices, self.sorted_indices,
                            self.bin_counts, self.nbr_starts,
                            self.nbrs, self.max_key)


class NNPSCountingSort(NNPS):
    def __init__(self, x, y, h, xmax, ymax, backend=None):
        super().__init__(x, y, h, xmax, ymax, backend=backend)
        # sort kernels
        self.count_bins = Elementwise(count_bins, backend=self.backend)
        self.sort_indices = Elementwise(sort_indices, backend=self.backend)

    def init_arrays(self):
        super().init_arrays()
        self.sort_offsets = carr.zeros(self.num_particles, dtype=np.int32,
                                       backend=self.backend)

    def reset_arrays(self):
        super().reset_arrays()
        # sort arrays
        self.sort_offsets.fill(0)

    def build(self):
        self.reset_arrays()
        self.count_bins(self.x, self.y, self.h, self.qmax, self.keys,
                        self.bin_counts, self.sort_offsets)
        self.scan_start_indices(counts=self.bin_counts,
                                indices=self.start_indices)
        self.sort_indices(self.keys, self.sort_offsets, self.start_indices,
                          self.sorted_indices)


class NNPSRadixSort(NNPS):
    def __init__(self, x, y, h, xmax, ymax, backend=None):
        super().__init__(x, y, h, xmax, ymax, backend=backend)
        self.max_bits = np.ceil(np.log2(self.max_key))

        # sort kernels
        self.fill_keys = Elementwise(fill_keys, backend=self.backend)
        self.fill_bin_counts = Elementwise(fill_bin_counts,
                                           backend=self.backend)
        self.scan_keys = Scan(input=input_scan_keys,
                              output=output_scan_keys,
                              scan_expr="a+b", dtype=np.int32,
                              backend=self.backend)

    def init_arrays(self):
        super().init_arrays()
        # sort arrays
        self.sorted_keys = carr.zeros(self.num_particles, dtype=np.int32,
                                      backend=self.backend)
        self.indices = carr.zeros(self.num_particles, dtype=np.int32,
                                  backend=self.backend)

    def reset_arrays(self):
        super().reset_arrays()
        self.sorted_keys.fill(0)

    def build(self):
        self.reset_arrays()
        self.fill_keys(self.x, self.y, self.h, self.qmax, self.indices,
                       self.keys)
        self.sorted_keys, self.sorted_indices = carr.sort_by_keys(
            [self.keys, self.indices],
            key_bits=self.max_bits, backend=self.backend)
        self.scan_keys(keys=self.sorted_keys,
                       start_indices=self.start_indices)
        self.fill_bin_counts(self.sorted_keys, self.start_indices,
                             self.bin_counts, self.num_particles)


if __name__ == "__main__":
    import sys
    backend = sys.argv[1] if len(sys.argv) > 1 else 'cython'
    np.random.seed(123)
    num_particles = 20
    x = np.random.uniform(0, 10., size=num_particles).astype(np.float32)
    y = np.random.uniform(0, 10., size=num_particles).astype(np.float32)
    x, y = wrap(x, y, backend=backend)
    nnps = NNPSRadixSort(x, y, 3., 10., 10., backend=backend)
    nnps.build()
    nnps.get_neighbors()
    print(nnps.start_indices)
    print(nnps.bin_counts)
    print(nnps.nbr_lengths)