1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
from compyle.api import declare, annotate
from compyle.parallel import serial
from compyle.low_level import atomic_inc, cast
from math import floor
import numpy as np
@annotate
def find_cell_id(x, y, h, c):
c[0] = cast(floor((x) / h), "int")
c[1] = cast(floor((y) / h), "int")
@annotate
def flatten(p, q, qmax):
return p * qmax + q
@serial
@annotate
def count_bins(i, x, y, h, cmax, keys, bin_counts,
sort_offsets):
c = declare('matrix(2, "int")')
find_cell_id(x[i], y[i], h, c)
key = flatten(c[0], c[1], cmax)
keys[i] = key
idx = atomic_inc(bin_counts[key])
sort_offsets[i] = idx
@annotate
def sort_indices(i, keys, sort_offsets, start_indices, sorted_indices):
key = keys[i]
offset = sort_offsets[i]
start_idx = start_indices[key]
sorted_indices[start_idx + offset] = i
@annotate
def input_start_indices(i, counts):
return 0 if i == 0 else counts[i - 1]
@annotate
def output_start_indices(i, item, indices):
indices[i] = item
@annotate
def fill_keys(i, x, y, h, cmax, indices, keys):
c = declare('matrix(2, "int")')
find_cell_id(x[i], y[i], h, c)
key = flatten(c[0], c[1], cmax)
keys[i] = key
indices[i] = i
@annotate
def input_scan_keys(i, keys):
return 1 if i == 0 or keys[i] != keys[i - 1] else 0
@annotate
def output_scan_keys(i, item, prev_item, keys, start_indices):
key = keys[i]
if item != prev_item:
start_indices[key] = i
@annotate
def fill_bin_counts(i, keys, start_indices, bin_counts, num_particles):
if i == num_particles - 1:
last_key = keys[num_particles - 1]
bin_counts[last_key] = num_particles - start_indices[last_key]
if i == 0 or keys[i] == keys[i - 1]:
return
key = keys[i]
prev_key = keys[i - 1]
bin_counts[prev_key] = start_indices[key] - start_indices[prev_key]
@annotate
def find_neighbor_lengths_knl(i, x, y, h, cmax, start_indices, sorted_indices,
bin_counts, nbr_lengths, max_key):
d = h * h
q_c = declare('matrix(2, "int")')
find_cell_id(x[i], y[i], h, q_c)
for p in range(-1, 2):
for q in range(-1, 2):
cx = q_c[0] + p
cy = q_c[1] + q
key = flatten(cx, cy, cmax)
if key >= max_key or key < 0:
continue
start_idx = start_indices[key]
np = bin_counts[key]
for k in range(np):
j = sorted_indices[start_idx + k]
xij = x[i] - x[j]
yij = y[i] - y[j]
rij2 = xij * xij + yij * yij
if rij2 < d:
nbr_lengths[i] += 1
@annotate
def find_neighbors_knl(i, x, y, h, cmax, start_indices, sorted_indices,
bin_counts, nbr_starts, nbrs, max_key):
d = h * h
q_c = declare('matrix(2, "int")')
find_cell_id(x[i], y[i], h, q_c)
length = 0
nbr_start_idx = nbr_starts[i]
for p in range(-1, 2):
for q in range(-1, 2):
cx = q_c[0] + p
cy = q_c[1] + q
key = flatten(cx, cy, cmax)
if key >= max_key or key < 0:
continue
start_idx = start_indices[key]
np = bin_counts[key]
for k in range(np):
j = sorted_indices[start_idx + k]
xij = x[i] - x[j]
yij = y[i] - y[j]
rij2 = xij * xij + yij * yij
if rij2 < d:
nbrs[nbr_start_idx + length] = j
length += 1
|